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Abstract. The weight updating formula of Kohonen's algorithm may be
viewed as the derivative of an objective error function when the input data
are generated by a discrete probability distribution. We have derived from
this interpretation a simple appealing characterization for the reference
vectors layout at the end of the learning phase. That characterization is used
for defining a convergence index for Kohonen's algorithm, and for
proposing a batch version of it. A first set of experiments with the batch
approach is discussed.

1. Introduction

Although the practical effectiveness of the Kohonen map connectionist model [1] has
been demonstrated across a wide spectrum of applications [2][3], this approach may be
criticised for its lack of theoretical foundations. There have been a few endeavours for
relating the algorithm to stochastic approximation theory [2][4], but they have yielded
only partial results. One of these establishes a kind of potential function if we assume
the input data to be generated by a discrete probability distribution. The restriction
about the functional accounts for the fact that it has discontinuities in its derivatives,
thereby preventing the use of most results about the convergence of stochastic
approximation methods. Nevertheless, since the functional is still almost surely
differentiable, it is natural to look at the zero values of its derivatives. In this paper
we investigate how the related equations might be exploited to gain more insight into
the mechanisms of Kohonen's algorithm.

2. An Objective Function

In this section the connectionist algorithm will be briefly described and the candidate
potential function will be derived. We will use the same notations as Kohonen [1][4]
for easier cross-reference.

2.1. Kohonen Map

Let us consider a fully connected feedforward network with two layers of units. The

input layer is fed with a feature vectors x = x(¢) € S CR”". The formal neurons in
the output layer are organized in a two-dimensional lattice (or grid) and are referred to
by their position vector r;_(;7 i2y, 1 <i <N. A topology is defined on the grid by
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means of some distance d(r;,r;) = d;;, like e.g. the Euclidean or Manhattan distance
(d,-j = max{lij - jjl, liz - j2I}). Each output cell also represents, through its fan-in

weight vector, a variable reference (or codebook) vector m(t) € K"

At step ¢, either during the learning or the retrieval phase, the squared Euclidean
distance d between current pattern x(f) and each reference vector m(#) is computed:

n
d G@m0) =1 x(@) -mi0) 1 = 3 [x(6)— my ()] %)
I=1
Let us denote by ¢ € {1,...N} the index of the best matching reference vector:
c(x) = argmin Il x(t) - m () I? ®
1

A step of the learning algorithm consists of presenting an input pattern x(f) and
updating every reference vector m(r) proportionally to the interactivity h(r,r.) =h;,
between unit ri(f) and the winner unit r(¢):

mi(t)é——mi(t)+ e(t)h,-c[x(t)-mi(t)] 3)
The interactivity h is often a positive decreasing function of the grid's distance d.
Normally, the learning rate &(t) decreases during the learning process. This holds true
for h as well, but in the following sections we will only consider a stabilized h
Junction corresponding to the final steps of the learning phase.

2.2. An Error Functional

In order to interpret Kohonen's algorithm (3) in terms of derivative of an objective
error function, we will assume that the input data have been generated by a discrete
probability distribution. Typical examples are problems where generalization over
unseen cases is not included, so that the available finite training sample S - of size T
- supports the whole probability distribution.

Assuming - for simplicity - equiprobability of cases x, we can deduce from (3) that
the average change of m; on a single learning step is:

-— &
Am; = — 2 hic(e) [x —m;] @
xeS .
For the complete set of weights m, let us define the functional Vi(m):
1 N
vi(m) = 572 Thioenlx- m;)? ®)
i=1xeS
Almost surely (with respect to the Lebesgue measure in ™), we can compute:
aVim) 1
T =T 2ic(e) r—my] ©)
i xeS

A straightforward computation of the Vh(m) derivatives has been possible because,

for a finite set S, it is (almost surely) possible to define an open sphere O; about

each m;, such that for every x € S, c(x) does not change when m; moves in O;. As

a consequence, the usual implicit dependency between c(x) and the m; 's has not to be

taken into account for the derivatives' computation.

V" (m)
om;

Since H, =g , it appears that Kohonen's learning formula (3) may be

230



ESANN'1993 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 7-8-9 April 1993, D-Facto public., ISBN 2-9600049-0-6, pp. 229-234

seen as a stochastic gradient descent method to minimize V(m). Unfortunately, this
does not mean that a successful stochastic approximation method for minimizing (5)
has been derived. Beyond the small problem of h(z) values that decrease during the
learning phase - we could be content with a true potential V#%(m) for the target
interactivity hr - the dependency between c(x) and the m;'s keeps from applying the
available theorems relative to the convergence of stochastic approximation methods.
In spite of these shortcomings, the fact is that many users tend to feel more
comfortable when numeric criteria are made available to them. The main goal of the
following sections consists of showing how equations (5) and (6) may be exploited
for gaining more insight into Kohonen Map's data representation.

3. Reference Vectors Layout

We will show that a Kohonen map should organize in such a way that any reference
vector is a weighted mean of the elements of S, with weighting coefficients that
correspond to the target interactivities hy.

3.1. A "Characteristic" Equation

Local minima for equation (5) correspond to zero values for the derivatives (6). Thus
it is possible to obtain an intuitive characterization of "ideal" Kohonen map's
reference vectors at the end of the learning phase:

1
u- = eee———m—— h X (7)
" Thicg) ,\E‘S o) |
X€eS

For the final layout of a Kohonen map, the codebook vector associated to a neuron r
should be close to the barycentre of the input set S, weighted by the interactivity
coefficients h;c,.). Two examples follow:
N
* K-means: h;, = §;,, and Va(m)=i Y 3 [x-m;]?. For the traditional
i=1 c(x)=i
reconstruction error criterion used for vector quantization, we recover the known
fact that the K-means vectors m; should be close to the centroid of their receptive
fields RF; = {x, c(x) = i}. ;

1
j=————— Yx ®)
Hi Card(RFi)xe%Fl;

*hy= I(dij < A), where I is the indicator function: Let us call extended receptive
field ERF; for neuron r; the subset of x € S leading to the selection of a neuron
rj within a distance A of r; :

ERF;= {x,3j,c(x)=jandd;; <4}= |JRF;. ©
d;i<A
Here again reference vectors m; should end up close to the centroid of their ERF; .
1
Hi = CadRE;) 2 (10)
' Card(ERF;) £CERF;
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3.2. A Convergence Index

The characteristic equation (7) may be used for defining in a natural way convergence
indexes for Kohonen's algorithm. For example, one may compute the mean value,
over the complete set of codebook vectors, of the square distance between actual m;
and ideal y; reference vectors:

N
10=2 S -mof an
i=1

That index I has been successfully tested on a real problem [3], thereby supporting the
interpretation of Kohonen map's organization according to formula (7). In [3], 228
14-dimensional input patterns were mapped onto an 8 by 8 grid (Card(S)=228, n=14,
N=64). d;; corresponded to the Manhattan distance, and h;; = I(d,-j < A), like for the
second example of section 3.1. For ten experiments differing only by the initial
random weight settings, and at the end of the learning phase, the index I has been
computed for A=0 (K-means), for A=1 (the actual target interactivity) and for A=2.
The averages over these ten experiments are displayed in table 1, where it appears that
the indexes corresponding to the target interactivity h,-j = I(d,-j < 1) are smaller by
about one order of magnitude.

0.177 0.015 0.112
Table 1.

4. Batch Kohonen Map Learning

One of the intriguing consequences of equation (7) stems from the possibility of
deriving a kind of "batch” version of Kohonen's algorithm, in a way similar to the
LBG algorithm [5] for tomputing K-means. One proceeds as follows:

1) Initialization of the reference vectors m;(tp)

2) Vi, compute 4; (¢) from (7). These values depend of the m; (¢)!
3) If Vi, i; ()= m; (¢), then stop.

4) Vi, m; (t+1) « u; (). Weighted means become reference vectors
5) Goto 2.

If such a process eventually converges, its index value (11) is obviously /=0.In
other words, the partial derivatives (6) are all equal to zero, and we are in presence of a
(local) minimum for the functional V/(m).

The first experiments with the proposed algorithm have yielded mixed results. On one
hand, some tests on a real clustering task [3] have shown that the algorithm may
prove to be extremely sensitive to the initial organization of the reference vectors. On
the other hand, the batch version of Kohonen's algorithm performed well for the
traditional toy problem were the elements of the (finite) training sample § have been

drawn from the uniform distribution on the unit square of 5)(2 .
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4.1. Real-life Data

The above algorithm essentially failed for the real dataset, even for initial reference
vectors m(tg) issued from a fairly pushed on traditional Kohonen map training
session. Either no convergence was observed, or the codebook set collapsed into a few
multiple points. However, when the "initial" m;(zg) vectors were taken from a
"completed” Kohonen map training session, then in many cases a single ensuing loop
let the algorithm converge. As a consequence, and quite generally, our suggestion is
to try for a fine tuning of the reference vectors of a trained Kohonen map, by
inspecting whether the substitution of the m; by the u; modifies any of the N
receptive fields RF;. When it leads to a fixed reference vector set, computing the
single batch loop constitutes a straightforward way for removing residual random
fluctuations from a given solution.

4.2. Synthetic Data

For the experiments with synthetic data, 100 vectors uniformly distributed on the unit
square of %2 were to be mapped onto an 8 by 8 grid (Card(S)=100, n=2, N=64). Here
again we used hij = I(d,-j < A), with a target range A=1 and d,-j corresponding to the
Manhattan distance. Since for n=2 it is possible to watch the map's organization by
plotting the weights on the plane (the "Magic TV"), we could verify for the following
experimental settings that the proposed algorithm was capable of providing a suitable
organization of the reference vectors:

» The initial codebook m(tp) comes from a very short Kohonen map training
session, that is a couple of epochs with A = 4 or 3. From the resulting rough
global organization the batch version with A = 1 quickly produces the expected
approximately regular grid.

* The batch algorithm may also be used from scratch (with the customary
initialization m;(fg) = (0.5, 0.5) + random noise). For Kohonen's algorithm, it is
advisable to foster the reference vector expansion with a high A range during the
early learning phase, and then let A decrease towards its target value. Since the
new algorithm is well defined for any fixed A value, it has been possible to
proceed in a similar way. Accordingly, we successively computed two epochs of
the batch version for A = §, 4, 3, 2 and 1, constraining the reference vectors to
centroids of extended receptive fields of narrower and narrower range, to finally
reach an organized state.

While the above-described experiments show the viability of the proposed algorithm
for the simple task at hand, they do not provide clear indicators for comparing the new
algorithm with the traditional one. For that purpose some numeric criterion is needed
-not Vim) or I (11)! - for measuring the quality of a Kohonen map. We have used
the topographic product P, which is a "quantitative measure for the preservation of
neighbourhood relations in maps” [6]. For the ensuing discussion, we just need to
know that decreasing |P| values correspond to improving performances.

We trained a Kohonen map over ten epochs. The first five, with initially high A
values, were aimed at spreading rapidly the reference vectors over the unit square and
reaching a partial organization. The last five epochs were computed with A = 1 (and a
decreasing learning rate €). At the beginning of each of these five epochs, the set of
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current reference vectors was saved and fed to the batch algorithm for initializing it.
The third column of table 2 displays the topographic product values that have been
obtained for a single batch cycle after the five successive initializations. They are
about two times smaller than the corresponding P values, epoch after epoch, for
Kohonen's algorithm (second column of table 2).

Epoch P: Kohonen P: Batch

6 -0.00838 -0.00434

7 -0.00676 -0.00359

8 -0.00569 -0.00327

-9 -0.00530 -0.00315

10 -0.00513 -0.00293
Table 2.

5. Conclusion

The functional V2(n) cannot strictly speaking be used in the frame of stochastic
approximation theory, even for a fixed h(r), because its derivatives have
discontinuities along the borders of adjacent receptive fields. Nevertheless, the
"characteristic” equation (7) which is obtained by zeroing the derivatives of Vi) (6)
has an appealing simple interpretation in terms of weighted means (7) or barycentres -
of extended receptive fields (9)(10). Furthermore, the convergence index (section 3.2.)
and the batch version of Kohonen's algorithm (section 4.) which are derived from
equation (7) have confirmed the relevance of the weighted mean interpretation for
Kohonen's map reference vectors.
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