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Abstract
We compare the MDL and NIC methods for determining the correct size of
a feedforward neural network. The NIC method has to be adapted for this
kind of networks. We include an ezperiment based on a small standard
problem.

1. Introduction

The Minimum Description Length Principle is an elegant method to determine
the appropriate complexity (size) of a model. It has been applied to different
kinds of models, and recently also to neural networks. The Network Information
Criterion for probabilistic neural networks is an instance of Akaike’s AIC and
can also be used for selection of a model. We discuss both principles, change the
NIC, and apply them to a small standard problem: the mapping of a two-joint
robot arm.

2. Minimum Description Length

The Minimum Description Length (MDL) principle is introduced by Rissanen
in [6] and it states that the best hypothesis is the hypothesis with the shortest
description length. The description length of a hypothesis is the sum of the
number of bits needed for coding the hypothesis, and the number of bits needed
for coding the exceptions. It is possible to derive the MDL principle from Bayes’
formula [1}.

The MDL principle can be explained in terms of a communication problem
[5]. Assume given a set of set of n objects with several attributes, and a predicate
on the objects. A friend has the same set of objects, but does not know the
predicate. We can sent him n bits, i.e. the truth-value for every object. When
the classification does not depend on the attributes then we can send no shorter
message but if there is a relation between the values of the predicate and the
attributes of the objects then we can send an encoded hypothesis together with
a list of exceptions. If the hypothesis too simple, then it has a small encoding
but the list of exceptions might be big. If the hypothesis is complex but without
exceptions, then it can be the case that the coding length is longer than n.
According to MDL, the best hypothesis is the hypothesis that gives the shortest
total length. It is assumed, and validated by experience, that this is the one
that grasps the important relations in the data, and ignores the noise. It follows
from this philosophy that the hypothesis selected by the MDL principle can be
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expected to be a good predictor for the classification of objects that are not
elements of the data set.

Neural networks can be coded in the following way. Both the topology and
the weigths on the links are coded. Assume that the network contains k nodes
numbered {1,...,k}. The code starts with the number k. Next a list of & bias
values is encoded using [ bits for each bias value. We need k x (k — 1) bits to
describe which nodes are connected by directed arcs (possibly in two ways). The
weight for each link is given using a precision of I bits. This description takes at

~most log(k) + 2loglog(k) + k x1 + k(k—1) + m x I bits, where m is the
number of directed arcs (links). The encoding of the data for the neural network
depends on its form. It is straightforward if the input and output elements are
in {0, 1}. If an example is not correctly classified then it is transmitted using the
input together with the correct output. If the input or output elements contain
integers or reals then they have to be encoded. For integers, one takes as many
bits as MaxInt needs, and for real numbers usually twice as many bits. For
the real numbers such an encoding introduces a new problem: when is output
correct? We consider it correct if the distance between the output vector and
the target vector is under a small fixed value.

3. Network Information Criterion

We base our discussion on [4]. In that paper the neural networks are required to
be probabilistic networks. We show that the derivation of the Network Informa-
tion Criterion (NIC) is also valid for deterministic networks with differentiable
transfer functions. This implies for example that the Heaviside function can
not be used as a transfer function, but that the standard sigmoidial transfer
functions are allowed.

Assume a neural network that outputs f(z,6), where z are the inputs and 6
is the weight vector {6,...,0;}. Define a function d that compares the desired
output y with the output of the network with weights # and input z by taking
the square of norm of the difference of the two vectors: d(z,y,8) = |ly— f(z, 6)||.
By V we denote the vector of partial derivatives to the weights 8;,...,0;: V =
(aio,-)?:l’ and VV = (%)?&13:1 By the assumption that the transfer functions
are differentiable, these derivatives of the function d exist. Inputs z are taken
from their domain with distribution ¢(z). In the sequel we assume that all
examples are taken from the same distribution. We define the expected loss

D(g, f,0) between the function g and its neural implementation f using weights
0 by

Dy, f,6) = /d(m,g(m),@)q(x)d:c

(for the probabilistic networks of [4] the expected loss term is more complicated
due to the probalistic nature of the network). We do not know the distribution
q(x), but we can use the training set to find an estimate ¢*(z) of ¢(z):

¢*(z) = %25(1‘ —z;) = %#{z re =2}
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If the number of elements ¢ in the training set is large enough, then ¢*(z) ap-
proximates ¢{(z). If we take ¢*(z) as distribution we obtain the expected loss
D*:

D*(0,1,0) = [ d(e,9(0), 000" @)de = 3 3 d(as,5(20,9)

Hence D*(g, f,0) is the average error of the examples in the training set. Con-
sider the learning rule

6 :=6 —e(Vd)(z,9(x),0) (1)

where ¢ is a constant called the learning rate. This is the standard learning
rule for feedforward networks performing gradient descent on d. Assume that
we choose z according to the distribution ¢*(z). We have the following variant
of a theorem in [4] in which trace denotes the trace of a matrix (i.e. the sum of
the diagonal elements):

Theorem 1 Suppose we want to model function g with a neural network
Az.f(z,0) using weights 6 using learning rule 1. Assume that repeated appli-
cation of the learning rule using a training set gives a fized point 0. Let 0y be
the weight vector that minimizes A0.D(g, f,0). Then the expected loss D on all
inputs relates to the expecied loss on the training set D* as follows:

. 1 - _3
(D(g, £,0)) = (D*(3, £,6)) + S trace(GQ™") + O(t™%).
G = Variance[(Vd)(z, g(z),00)], @ = EzpectedValue[(VVd)(z, g(), 00)]
(z is selected in accordance with probability distribution g(z)).

This theorem is the basis of the Network Information Criterion. Let F' be a
set of models in which we allow a varying number of weights, i.e. F' contains
functions f with the same codomain, and only the number of weights varies.
Fix a training set with-¢ examples. For each f € F, let §; denote the weights
after training with learning rule (*). We now define the Network Information
Criterion as follows: Choose f such that NIC(f) is minimized:

NIC(f) = D*(g,f.0;) + %tmce(G}Q}—l)

G} = Variance[Vd(z, g(z), 0¢)], Q} = Ezpected Value[VVd(z, g(z),0f)]

(z is selected in accordance with probability distribution of the training set
¢*(2)). The model that minimizes the NIC is optimal in the average loss sense.
We can use this criterion to select a particular model from a set of possible
models. Note that NIC(f) only refers to the training set.

4. Comparing MDL and NIC
The major difference between MDL and NIC is that the MDL principle is about
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code lengths where NIC is bout the expected average error for new examples.
MDL therefore can used for model selection, where the assumption is that it
selects a model which also optimally classifies new examples. NIC also predicts
the performance of the model'. Another major difference is that the NIC selects
the model with the smallest error measure, depending on the chosen error type.
(In our experiment this is the total squared sum.) The MDL principle uses
a list of the misclassified examples and hence for real numbers a threshold is
necessary. Both principles have a training error part and an added complexity
term. The importance of the complexity term decreases when the number of
training examples increases. This is the decision that both criteria take: how
complex may a model be to be justified for the training set of this size.

A difference between the two criteria is the effective number of parameters
in the complexity term of NIC vs. the actual number of parameters in the
complexity term of MDL. The effective number of parameters for NIC equals
the effective number of parameters of Moody [3, 4]. If the effective number of
parameters of NIC is much lower than then the actual number of parameters of
MDL then the two methods might give preference to different models.

Murata and Usui have done some small-scale experiments with the NIC cri-
terion 2. There are some problems with NIC if the weights are small. The MDL
method seems to work well for neural networks. In practice, application of the
NIC criterion seems to be more difficult and computationally more expensive
(allthough at first sight it is mathematically more attractive).

5. Robot arm experiment

In this experiment we model a robot arm with two degrees of freedom (see
Figure 1). This standard problem is also discussed in [2]. The problem is to
construct a feedforward network that associates the (yi1,y2) coordinates to the
(01,82) coordinates. Let ry and ry be the lengths of the two arms. Then the
relationship is given by

y1 = r1cos(f1) + rocos(by + 02), y2 = rysin(61) + rosin(fy + 62).

As in [2] we take r; = 2 and rp = 1.3. One hundred random examples
from a restricted range are constructed to which a little gaussian noise is added
to the outputs. The training set consists of random examples taken from two
separate areas of the domain. The first angle §; was choosen between 90 and
150 degrees or between 180 and 240 degrees and the second angle between 30
and 150 degrees. We want the network not just to interpolate between the given
examples, but also to extrapolate. Therefore we use two test sets: one using
the same domain as the training set and a second test set in which #; ranges
between 0 and 270 and 2 between 0 and 180 degrees.

We want to choose a three layer feedforward network, with in the second layer
nodes with sigmoidial transfer functions and in the third layer output nodes with

1According to Rissanen, coding is the same as prediction, and in [7] he gives error bounds
for prediction using the MDL principle (Predictive MDL).
2Murata, personal communication.
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Figure 1: The robot arm

linear transfer functions. The number of nodes in the hidden layer is varied. We
want choose the network using only the training set. After that, the models are
tested with the two test sets.

During the experiments we noticed that the second test was more 1nterest1ng
in the sense that for the first test set the increase in error for the optimal network
and bigger networks was small. For the second test set the slope of the error
after the optimal network size was steep.

In figure 2 the error on the training set and prediction error are shown for
different networks. Thirty different random training sets are used and the net-
work was trained with 10° training cycles. We see that the optimal network is
a network with 8 hidden nodes.
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Figure 2: Error on the training set and second test set

In figure 3 we have the results of MDL and NIC. MDL observes that the total
code length has a minimum at seven hidden nodes, being only one node away
from the optimal network size. NIC gives a good estimation of the error for the
first test set. There are some problems in the computation of the complexity
part due to numerically unstable computations.

6. Conclusions

Application of statistical principles for model selection like MDL and NIC to
neural networks works well for the small experiment. For a better comparison
it is necessary to apply both principles to more difficult problems.

The MDL method is suited for classification problems in which error coding is
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Figure 3: MDL (left) and NIC (right).

straightforward. Applying the MDL method is simple, and it is computationally
not expensive.

The NIC method is suited for problems with a continuous error measure (like
the robot arm problem). The NIC only predicts the error when the test examples
are taken from the same distribution. When the test domain differs from the
training domain, NIC looses its theoretical basis. However, if the distributions
are not too different NIC can be succesfully applied. NIC requires a continuous
transfer function in the neural network. Computationally NIC is more difficult
than MDL principle because inverses of matrices have to be computed.
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