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Abstract

We investigate the dynamics of a finite fully connected network and
analyse its large-time limit behaviour. We consider the mean interspike
interval as a function of the coupling constants: in the case of inhibitory
connections we estimate its rate of growth, and in the case of the excitatory
connections we find its minimum.

1. Introduction

Recently a new stochastic network model was introduced in mathematical neu-
robiology [4]. There it is assumed that the electrical activity (the membrane
potential) of a single independent neuron can be described by a Markov process.
This model takes into account well-known facts from physiology: the spiking
nature of the neuronal activity, the exponential decay of the membrane potential
in the absence of afferent spikes, and the time dependence of the interactions
between the neurons.

This model exhibits a number of interesting aspects. In fact, simulation stud-
ies [4] have shown its ”closeness?-to physiology. One can derive the stochastic
models [1] or [2] from model [1]. Model [1] has also common features with known
stochastic models [3].

The case of positive coupling constants (excitatory connections) is investi-
gated in [6], where the exponentially fast synchronisation of the moments of
firing is proved. Here we study the mean interval of the consecutive moments
of firing (i.e. the interspike interval) in the case of excitatory connections by
means of stochastic simulations. We find the critical connection constant which
provides the minimum of the mean interspike interval.

Usually the state of the neuron is described by its ”inhibition” [1}-[2]. The
inhibition of a neuron represents the duration of time before the first moment
of firing of this neuron if no interaction takes place meanwhile [2]. As is shown
in [7], the description of our model in terms of the processes of the inhibitions is
equivalent to one given in [1] and [2]. The main difference is that in our model,
unlike the previous models, the interactions depend on the current state of the
net, i.e. our model is not spatially homogeneous.

Inspired by [5], we find the underlying dynamics of the (stochastic) process
of the inhibitions. We classify the vector-fields of the conditional mean jumps of
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the Markov chain corresponding to the process of inhibitions. This classification
together with results in [6] and [7] allows us to describe metastable states in the
model and to estimate their life-times.

2. Model and results

We define a system of N right-continuous processes S;(t),t > 0,1 < i < N,
with zero initial state, i.e. S;(0) = 0 for 1 < i < N. The process S(t)
(S1(t),...Sn(t)) has state space [0,00)" and is defined on some probability
space (Q L, P). In terms of our neural model, each coordinate S;(t) describes
”an age” of an impulse (or the time elapsed since the last firing until the moment
t) of the i-th neuron, i € {1,..,N}, t > 0. We call any moment T such that
Si(T) = 0 for some i € {1,..., N} a moment of firing of the i-th neuron. Let
7i(t),t > 0, 1 <4 < N, be Ornstein-Uhlenbeck processes satisfying the following
system of Itd equations:

dn,'(t) = —ami(i)dt + U;dWi(t), ) (l)

with initial conditions 7;(0) = 0, where 4, 0; > 0, and W;(t), i € {1, ..., N} are
standard Wiener processes on (Q, X, P), independent for different :. We define
also the right-continuous processes

i(t) = yre~ @S0,

zi(t) = 7i(Si(0)) + [au+ald8(t-Si (1)) ™S+ N~ g emeS®  (g)
§:55()<Si(2)

to be the threshold function and the membrane potential of the i-th neuron,

respectively. We assume, that at any moment T of firing of the i-th neuron,

process z;(t), t > T, restarts independently of its history. The parameters of

any single neuron are assumed to be fixed and satisfy the following conditions:
yz>0 Vi > ai; ,a < ¥ —ai, 1-1

\xZ(t) , : I '\J I ; ';
x2{t)
Y

x1{1) | \]

0 2 4 6

Fig. 1. The typical trajectories of the processes z;(t) and y;(t)
for N=2,a55=-1, a5 =1, yi=4, a;=1,0;=2, {,j=1,2,i # j.
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2.1 Process of inhibitions. We define the right-continuous process X(t) =
(X1(t),..., Xn(t)), t >0, with a state space RY = (0,00)" to be the process

“of inhibitions inductively in the following way.

i).The components X;(0), i = 1,..., N, are independent and
Xi(0) = inf{r > 0: n;(r) + (aii + al)e™*" = y;e”*"}. (3)

ii) As long as all the components of X (t) are strictly positive, they decrease
in time with rate one until the first (random) time ¢;, that X;, (t) reaches zero
for some iy € {1,...,N}. Let T} = ¢;,. Note that ¢;, = min; X;(0). Let, also

M ={1<j<N:X; :miinX.'(O)}.
Then at time T} one has ,
X)) =YD, ieM,,
and
X;(T1) = X;(0) —ti, + 050, (G (T-), G€ (L. N\My,  (4)
where Yi(l) for any 7 is an independent copy of the variable
Y = inf{r > 0: (7)) + aiie”™ " = ye” "}, (5)

and for every ¢ > 0,1 < j < N and any subset M C {1,...,N}\{j}, the
random value 0;;){(3:) is an independent copy of

0jM(1:) = inf{'r >0: nj(x + 7—) + ajje-a_,'(z+-r)+ (6)

+ Y ajie” 7 > yie” ) | ni(z) + 56T = yiem 7).
ieM .
ii1) The process of the decreasing of all the components of the vector X(t)
starts all over again but now from the configuration X (71).

Distributional equality of the sequence of firings in the net (2) and the se-
quence {T,}22, is proved in [7].

2.2 The vector-field of the conditioned mean jumps. Let, a;; < 0 for
all i # j, 1,7 = 1,...,N. Consider associated with the process of inhibitions
X(Tn), n=0,1,..., the Markov chain X" := X(T,—), n=1,2,..., with state

space
N NM
R+r0 - U R+,O >
Mc{1,..N}

where Rf"é" = {(z1,---,2N) :2; =0if i€ M, and z; >0 if i € M}. Note,
that due to (3), (5) and (6), one has X" € UX, Ri”(') with probability one, iff
aij <Oforalli#j, 4,j=1,...,N. fX" € RI_:,’(’) for some 1 < i < N and
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n > 1, then it means in terms of our neural model, that the i-th neuron fires at
time T,,.
In the case N = 2 the investigation of the process X™ can be simply reduced

to the investigation of the Markov chain £,, n = 0,..., on a line, where
) Xptt i Xt s,
bn = E(XMH) = 0 X2 SRR > 0, (M
0, otherwise.

Let us define the conditioned mean jump function V(u), u € R:
Vi(u) .= E{ény1 — &n | €n = u},

which is clearly time-homogeneous. In the case M = {5} for i # j we will write
0:j(u) := O;m(u). Consider now Eb;;(u) as a function of u and a;;. We will
use the notation 6;;(u, ag;) := 6;;(u). It is not difficult to derive the following
bounds: .
E6;j(u, aij) < Cre™*"ayj] (8)

for all |a;;| > 0, ©> 0, and
Ci(log |aij| — aiu) + By < Ef;(u, a55) < Co(log|asj| — asu) + B2 (9)

for all |a;j| > e®*, u > 0, where B, Ci, k = 1,2, are some positive constants
independent of a;;.

In the case @; = a > 0 and ¢; = ¢ > 0 for all i = 1,2, one can obtain
an explicit classification of the vector field V(u) on the line in terms of the
parameters of the model. Namely, let for i £ j, i,j = 1,2

laij] _ logpij

Qullag) = 7 log L = 28! (10)
Then V(Qi)=0,if pi; > 1,i# 4, i,j = 1,2, and '
V(u) >0, if u € (—o0, —max{Q2,0}) J(0, max{Q;,0}), ,
V(u) <0, ifu€(-max{Qs,0}, 0) U(max{Q1,0}, o). (v
Furthermore, from (8) we obtain:
Jim V(w)=-BY; <0, lim V(u)=EY;>0. (12)

By analogy with dynamical systems, if V(u) = 0, we shall call the point u
an attracting point of the chain {¢,}. In general, if p;; > 1 for all i # j, then
there are N attracting points ¢;, lying on the hyperplanes Ri'," , t=1...,N:
¢ = (Qii,...,Qni), with Qj; defined by (10) for all i # j and Q;; = 0 for
any 1 <i<N.

It was proved in [7] that the process of inhibitions in the case N = 2 converges
to a certain limit distribution, so that each neuron fires infinitely often with
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probability one. Nevertheless, in the case when Q; or Q; is sufficiently large,
one can expect according to (10)-(12), that only one neuron can keep firing for
a "long” period of time.

In fact, simulation results (see Fig. 2) show clearly a linear growth of the
mean time interval during which a neuron does not fire as a function of |a|
(a < 0), where a = a;; for all i,j = 1,...10,i # j, in the simulated net (2)
with 10 neurons. We emphasize that the linear growth implies rather long time
intervals of silence for one neuron. This should be compared to the bounds
(8)-(9) for Ef;j(x). The last fact confirms an idea in [4] concerning metastable
effects in the stochastic neural network (2).
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Fig. 2. The mean interspike interval as a function of a < 0
for N=10, a55=0a,a5=1, i =4, i =1, 0, =2, 1,5 = 1,...10,i # ;.

2.3 Minimum of the mean firing spacing in the model with excitatory
connections. In Fig. 3 we depict the simulations of the mean interspike
intervals as a function a < 0 in the simulated net (2) with 10 neurons, where
a;; = aforalli,j=1,...10,i # j. Note that the mean spacing characterizes the
number of moments of firing per time unit. The importance of this is discussed
in [3]. One can derive explicit formulas for the distributions of the random value
I;(a) of the interspike intervals of the i-th neuron, 1 < i < N, for two marginal
cases a = 0 and a = co:

2ie” 0 oy — aii) ( oi(ys — aii)’ )

d
pio(u) := c—l—t;Pr{Ii(O) <u} = si/a(e — 1P T (o2eZan 1)

N u .
pi(u) == &%Pr{l,-(oo) <u}=p(u):= H% H/ pio(v)dv | . (13)
j=070
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Although the case @ = oo is unsuitable for neuronal modelling, formula (13)
allows us to derive an upper bound for the minimum mean interspike interval,
which minimum corresponds to the critical (finite!) value a.,.. This value ex-
hibits the highest stable (in time) collective neuronal activity. Notice also that
for any El;(a.,) < U < EI;(oc0) there are two values of a, such that EL;(a) = U.

1400

400 600 8001000

Fig. 3. The mean interépike interval as a function of a > 0
for N = 10, aj; = a, G = 1, Yi =4, a; = ]., (241 =2, i,j: 1,...10,i;£j.
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