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Abstract. In this paper we present a new method for improving the performance
of Piecewise Linear Separation (PLS) incremental algorithms. As has been
previously stated, this kind of neural incremental algorithms yield poor
performances when dealing with some real world discrimination problems. This
undesirable behaviour is due to the nature of the goal functions (which usually
count the number of correctly classified input patterns) the unit training
algorithms try to maximize. So as to avoid this poor performance, we shall
present a method that modifies the unit training algorithms in order to optimize
goal functions which are related to the distribution of the training patterns in the
categories defined in the input space. As will be shown, this method improves
the PLS incremental algorithms’ behaviour, which may be measured as the
average number of units generated by the network.

1. Introduction

Motivated mainly by the problems associated with classical neural algorithms
(convergence properties, heuristic determination of network structure, etc.), there has
been an increasing interest on the research field concemned with the so called neural
evolutive algorithms in the last few years. The defining characteristic of this kind of
neural algorithms is their capability to determine the most suitable network architecture
needed in solving a certain task.

As was pointed out in [1], there are four main types of incremental evolutive
algorithms, and we shall concentrate on the Piecewise Linear Separation (PLS)
incremental algorithms. This kind of incremental algorithms, used mainly for
classification tasks, try to find the discriminant function which separates categories
defined in the input data space. This discriminant function is obtained by combining
the linear discriminant functions associated to perceptron-like units generated during
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the training process;

In this paper we shall review the methods which have been used for training
the individual units generated by the PLS incremental algorithms,and shall point out
how these methods can cause the PLS algorithms to evolve in useless manner. We
shall then present some of the already existing methods for avoiding this erroneous
behaviour, and finally, a novel modification criterion for the unit training process will
be explained.

2. Unit training principles

Perceptron [2] or Pocket [3] are the usual training algorithms employed for
the units generated by the PLS incremental algorithms. When the learning process is
completed, each unit has the weight vector which yields the best correct classification
rate in accordance with its input training set.

However, optimizing the function which accounts for the number of patterns
correctly classified may impose an erroneous evolution scheme for the incremental
algorithm. Let us consider as an example the problem depicted in figure 1, which
consists of finding the discriminant function which separates the "x" patterns from the

" n

o" patterns.

In this figure we have represented with dotted lines the four possible
discriminant functions given by the Perceptron or Pocket leaming algorithms after the
training process for the first unit has completed. Supposing that these discriminant
functions classify on their right side category "x", we can then deduce that
discriminant O classifies correctly 4 input patterns, discriminant 1 and 3 classify
comectly 3 input patterns, while discriminant 2 classifies correctly 2 input pattemns.

Figure 1. Possible perceptron solutions
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Once the first unit has been trained, the PLS incremental algorithm would
evolve the network by adding new units. These units receive as input training sets the
reduced versions of the original training set obtained subdividing this set in as many
subsets as new regions formed by the discriminant associated to the first unit. In this
way, as discriminant O gives using the Perceptron or Pocket algorithms the best
solution for the problem (it yields the best correct classification rate), the PLS
incremental algorithm will produce an infinitely large network structure composed of
redundant units, each of them trying to solve the same problem and arriving to the
same useless solution.

There is therefore a need for improving the unit training algorithms, so as to
obtain suboptimal (in the sense of correct classification rates) but useful (in terms of
network evolution) solutions.

3. Modifying the unit training algorithms

Some methods have been proposed in [4], [5], [6] for improving the
performance of the PLS incremental algorithms, These methods force the unit training
algorithms to maximize some entropy-like function which gives information regarding
the quality of the partition the current units performs on their input training set.

Furthermore, there are some other heuristic methods [7], [8] which, by
modifying the unit training algorithms so as to avoid the evolution-useless solutions,
provide useful network construction schemes .

The method we propose in this paper is based on the definition of some
functions which provide a quantitative measure of the geometrical relations between
the different categories defined in the input space.

For a problem consisting of separating M different categories, we define the
category-i centroid as the vector whose components are obtained by calculating the
mean value from the components of the vectors which represent the patterns belonging
to this category. Once all C; centroids have been calculated, we define the following
functions for the entire distribution:
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where;
. Ji": Contribution to the J.. function from the patterns belonging to the class

k with respect to the centroid of class 1 within partition p

P: Number of partitions performed by the current unit

N,: Number of patterns belonging to category k in partition p

x,": ith pattern of category k in partition p

Figure 2 depicts, for a 3-category input problem and without partition, how
some J,; terms are actually calculated.

Figure 2. Calculating the value of J.

As can be easily deduced, as the network training progresses, that is, as new
partitions are formed in the input training space, the value of J. decreases. Finally,
when the global discriminant function is obtained and all the categories are correctly
discriminated, J. becomes zero, meaning that each partition contains exclusively one
class. '

From the previous results, we propose to modify the Pocket algorithm so as
to minimize the J; fufiction. In this way, when the Pocket algorithm is running, we
store the current weight vector only if its J,, value is lower than the last stored weight
vector’s J. value.

If we now try to calculate the J. values for the four different possible
partitions obtained by perceptron like algorithms on the problem presented on figure
1 (assuming that the input patterns have components within the interval [0.0,1.0] and
that manhattan distance is used), we obtain a value of 4.0 for discriminant 0, a value
of 2.5 for discriminants 2 and 3, and a value of 3.33 for discriminant 1. Therefore,
opposite to maximizing the correct classification rate, by choosing the partition with
the lowest J. we shall always choose a useful solution.

In table 1 we show the results, measured as mean number of units generated,
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for the Upstart algorithm [9] using different classification problems. Each problem
consists of 40 input patterns, 20 belonging to each class. For the random boolean
function problem we selected 40 8-bit input patterns, for which the boolean function
should produce 1 or 0 outputs with equal probability. The results are given for the
Upstart algorithm [9], one of the proposed PLS incremental algorithms, with the
standard Pocket algorithm and with the Pocket algorithm modified using the criterion
proposed in this paper.

The results were obtained by running the Upstart algorithm 20 times on the
same input problem, and then taking the mean value of the number of units generated
by the algorithm in each run.

Problem Upstart with standard | Upstart with modified
o Pocket Pocket
Concentric 24773 9.909
classification
Gausian 9727 5.636
classification
Intertwined spirals 116 7227
Random boolean 25.273 8.318
function

Table 1. Comparative results for the Upstart algorithm

As can be deduced from these results, the performance of the Upstart
algorithm (measured as mean number of units generated) is slightly better when using
the criterion proposed in this paper for training the units generated during the network
construction process.

4. Conclusions

We have shown in this paper that the linear discriminant solutions given by
perceptron or Pocket learning algorithms are not always useful for evolving the
network structures generated by PLS incremental algorithms.

After reviewing some modification proposals for these unit training
algorithms, we presented a novel approach for improving the quality of the solutions
given by these algorithms. This method is based on defining some functions which
measure the complexity of the distributions to be discriminated. These algorithms are
modified in order to minimize the complexity measure given by those functions, so
as to improve the linear discriminant functions given by the unit training algorithms,.
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; As a result of using these modified training algorithms, the performance of
the PLS incremental algorithms improves significantly.

Acknowledgments

This work has been partially funded by ESPRIT HI Project ELENA-Nerves
2 (no. 6891) and spanish CICYT action TIC92-629.

References

1. F. Castillo: Incremental Neural Networks: A Survey. Technical Report. INPG
Grenoble. (1991) )

2. F. Rosenblatt: Principles of Neurodynamics. New York:Spartan. (1962)

3. S.L Gallant: Optimal Linear Discriminants. Proc. of the 8th. Intl. Conf. on Pattern
Recognition. Vol. 2, 849-854. Paris, (1986)

4. J.A. Sirat, J.P. Nadal: Neural Trees: A New Tool for Classification. Technical
Report. Laboratoires d’Electronique Philips. (1990)

5. J.P. Nadal, G. Toulouse: Information Storage in Sparsely-Coded Memory Nets.
Network, Vol. 1, 67-74. (1990)

6. S. Knerr, L. Personnaz, G. Dreyfus: A new Approach to the Design of Neural
Network Classifiers and its Application to the Automatic Recognition of
Handwritten Digits. Proc. of IJICNN 91, 91-96, Seattle. (1991)

7. J.M. Moreno, F. Castillo, J. Cabestany: Enhanced Unit Training for Piecewise
Linear Separation Incremental Algorithms. Proc. of ESANN 93, 33-38, Brussels.
(1993)

8. J.M. Moreno, F. Castillo, J. Cabestany: Optimized Learning for Improving the
Evolution of Piecewise Linear Separation Incremental Algorithms. New Trends
in Neural Computation, 272-277, J. Mira, J. Cabestany, A. Prieto (eds.), Springer-
Verlag. (1993)

9. M. Frean: The Upstart Algorithm: A Method for Constructing and Training
Feedforward Neural Networks. Neural Computation 2, 198-209. (1990)

146





