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Abstract: Two methods that attempt to remove useless weights af-
ter training are reviewed and compared. Both make use of the second
derivative information but use different approaches. Both lead, under
the same set of hypothesis, to the same selection criterion for pruning
unrelevant weights. Practical comparison is also carried out on a small
toy problem.
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1 Introduction: The design issue

Feed-forward Layered Neural Networks (LNN) are well known to be universal
approximators provided they are composed of at least one hidden layer and a
sufficient number of hidden units. Teaching them with a sufficient database of
input/output pairs provides an approzimation of the phenomenon underlying the
database or a model of that phenomenon. It is theoretically proven that such
architectures are universal approximators [1]. But the number of hidden units
required for the approximation is unknown. So usually, a sigmoidal function is
used such as tanh and ‘enough’ units are provided, making the learning phase
all the more laborious and uncertain. Moreover, it leads to ‘bad generalisation’
properties for the network: this phenomenon is known as over-fitting. One way
to cope with it is to identify useless parameters and delete (prune) them. Other
techniques such as weight decay or weight elimination [2] also aim at reducing
the number of parameters, but while learning. They make use of a second term
in the objective function to be minimized. We will not discuss them here, but
they have been found to be difficult to tune (proportion of the second term).

In fact, pruning parameters from a known acceptable solution, that can be
used as a target, seems simpler than adding parameters properly so as to reach
a solution. Strikingly, this is what happens with nervous cells.

In this paper, we compare two pruning methods: Optimal Brain Damage [3]
and Statistical Stepwise Method [4]. Basically the methods seem quite differ-
ent, but we show that they are theoretically equivalent under the same set of
hypothesis. Experimental results are finally presented on a simple example.
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2 Optimal Brain Damage (OBD)

2.1 The idea

Originally, OBD was proposed by Yann Le Cun and al. [3] as an alternative
to the naive approach that leads to suppress the smallest weights. OBD was
derived to move beyond this approximation and to give a theoretically justified
pruning method. The scheme can be stated as : “Prune the weights that, if
pruned, will cause the least increase of the overall error”.

Suppose we have a LNN that has learnt by minimising an average squared
error (or any additive measure) E. The vector of adjusted parameters P =[p]
is a point in the space of parameters that realises a (local) minimum of the error.
It is possible to expand the error into a Taylor serie around that point and thus
to quantify the influence of a (little !) variation of a parameter p; over the error.
The idea is that deleting a parameter p; is understood as bringing it to zero,
thus causing a variation §p; = (0 — p;). Using a Taylor expansion of E around
P:

_0’E
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and making the following hypothesis: 1) E is almost quadratic (order 2 devel-
opment is enough), 2) The Hessian is diagonal (cross terms vanish), and 3) The
network is at a local minimum (first term vanishes), leads to the simplified ex-
pression of saliency:

8= 025(?:)2 ()

This is read as “deleting parameter p; (setting it to 0) causes an increase of
E of 5;”. s; is used to seek parameters, and the p;’s associated with the smallest
8;’s are pruned.

The original pruning procedure integrates this idea in the following form:
1. Start off with a sufficiently large network, 2. Teach the net until a reasonable
solution is reached, 3. Calculate saliencies s; for each parameter p;, sort the p;
using s; and delete lowest saliency p;’s, 4. Loop in 2 as long as some stopping
condition is not met.

Note that the retraining phase is theoretically essential in order to guarantee
that the parameter vector P realises a minimum of E.

2.2 Diagonal Hessian?

The hypothesis of a diagonal Hessian seems strong and only justified by simpli-
fication matters. But if we wish to delete only one parameter p; at a time, it is

1A Taylor expansion makes sense only for small variations of P
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easy to see in (1) that the saliency s; holds even without a diagonal Hessian. In
this case, the third sum (cross terms) is null because 8p; = 0 thus 6p;6p; = 0
for j # 4. In fact, off diagonal terms are useful only if we wish to delete several
parameters at a time (they express the dependency between deletion of different
parameters). However, as the computation of the diagonal of the Hessian is
already heavy, it is desirable to ‘factorize’ it for several parameters. But, this is
theoretically correct only when assuming the stronger hypothesis of a diagonal
Hessian.

2.3 Calculation

The original method requires the calculation of the diagonal of the Hessian. This
is done in an exact way, inspired of back-propagation (BP). As a matter of fact,
it is possible to propagate not only first derivatives but also second derivatives
in the BP scheme (simply derive once more the BP equations). Calculating
the second derivatives of the Mean Squared Error (MSE) with respect to the
parameters {p;} leads to an “average” saliency over the whole test base. The
complexity of the operation is roughly 3 times the complexity of one learning
step. This is the reason why the hypothesis of the diagonal Hessian is interesting.

3 Statistical Stepwise Method (SSM)
3.1 The idea

SSM is a method for pruning weights under information criterion control pro-
posed by Marie Cottrell et al. in [4]. Its principle is strongly linked to the Least
Squares (LS) estimation theory, but simple in its philosophy. It can be stated as:
“Prune the weights that are statistically non significant, but only if the resulting
net is “better” than the previous one”.

The notion of quality for a network (model) is defined as Akaike’s B Infor-
mation Criterion (BIC, see end of section for details).

The key is to consider that the vector of estimated parameters P = [p)
obtained after a LS optimization is a vector of random variables, P, known as
the LS estimator of the theoretical solution P* that we seek. Thus we can try
to describe the law of that LS estimator P . As a matter of fact, due to the
boundness properties of the sigmoidal functions and to the fact that we are
seeking a LS estimator, P is asymptotically Gaussian, that is

VT(P - P*) Tfm N(0,02571) (3)
where T is the size of the learning base, o2 is the residual variance of the model
(MSE) and T the Hessian of the error E with respect to the parameters at P*.
Now that we know the asymptotic law of vector P, we can test (statistically) the
nullity of each of it’s components. The test is a standard Gaussian test, carried
out on the mean of the estimator (P* from (3)) in order to decide whether it

is null or not. p} = 0 is tested against p} # 0, o7 is estimated by 62, and the
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variance of p; is then estimated by &2 multiplied by the ith diagonal term of the
inverse of the Hessian taken in P (cf. (3)). The criterion is thus the quantity
defined for the test rule

pi

o(p:) @
For a fixed significance level of 5%, p; is considered non significant as soon as
ti < 1.96. t; is used to seek parameters, and the p; associated to the smallest
t; such that ¢; < 1.96 is selected as candidate for pruning. It is actually pruned
only if the BIC of the pruned net, after retraining, is smaller than the BIC of
the current net. If not, pruning is stopped. In the end, the effect of pruning is
controlled using an information criterion

i =

2
BIC = 1og(5’1-§-) +n, 1°gq(,T)

where n, is the number of parameters of the net (model).

3.2 Calculation

Here again, the root of the method is the Hessian. In this case, the full matrix
is computed, then inverted, and the diagonal terms are considered to compute
the criterion. In fact, any heuristic can be used to get the Hessian, or better
the diagonal of the inverse. At the moment, the full Hessian is computed using
the approximation V2E = (1/T) - ¥ Vy(X,) - *Vy(X,) where y is the output
of the net and X, the nt® training pattern. The complexity of the operation is
roughly T' x n2 + n3, where n, is the total number of parameters. The inversion
is the heaviest task in the case of small databases.

4 Comparison

4.1 Theory

It is simple to notice that both use the second derivative information to select
the parameters to be pruned. Indeed, if we suppose that the Hessian is diagonal
(as in OBD) both criterion are rigorously equivalent. In fact, in equation (4) the
term &(p;) is proportional to the square root of the diagonal term of the inverse
of the Hessian. Thus if the Hessian is diagonal, it’s inverse is also diagonal and
the terms &(p;) are such that 6%(p;) = 0?2/ ‘?;Tf. Then it is simple to see that
equation (2) is just the square of equation (4): except for the threshold. Thus
selecting the parameters having a minimum criterion in either way is equivalent.
The other hypotheses are equivalent and can be summed up as “convergence is
reached and the error is quadratic”.

SSM provides a theoretically justified threshold for the selection phase. OBD,
doesn’t, but it is still possible to design a simple threshold allowing only a small
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9 | [0]40|[0]80 | -2.41
[0]80 | [1]08|357%

Fig 2. Pruned connections (solid). Table 1. Pruning results.

percentage of error increase as the saliencies are defined in terms of error varia-
tion. Finally, the idea of post-pruning verification using the BIC criterion could
be applied to any pruning procedure. It could be compared to a sophisticated
try and error procedure, the last decision relying on the BIC, and the selection
criterion pointing out the parameters to be pruned.

4.2 A small toy problem

In order to evaluate the criteria, we have built a little problem: learn function
f(z) = sin(xz) - sin(2n(z + 0.5)) defined on [-1,1] from a set of 100 sam-
ples randomly (uniform) distributed over the interval. Samples are noisy pairs
(2, f(z)+n) where n is a random number in [0.3,0.3] (Fig 1). This was used to
compare the criteria: do they prune the same weights under identical conditions?
The results on a network composed of 10 hidden units are reported.

On Fig 2, [1]07 means weight to unit 0 layer [1], from unit 7 layer [0]. Small
circled numbers indicate the order in which connections were pruned (‘Stage’ in
Table 1). Arrows are the biases.

Pruning is achieved on the same network for both methods. This net is at a
(local) minimum i.e training is performed between each stage. It is often carried
out on the net resulting from SSM pruning.

In Table 1, each double line shows which weight is pruned (first line) and
which is next when ordered by s; (OBD) or t; (SSM). The ‘Eval’ column shows
BIC and MSE (in %) before pruning or, equivalently, after retraining. It is
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calculated on the net resulting from SSM.

Pruning stops for SSM because the selected weight has t; > 1.96. However,
no further pruning is achievable, as from experience, 6 units are required for this
task, so the BIC of any over pruned net would be greater that the one obtained
here (final net: BIC=-2.48, MSE=3.6%). Note that 3.6% error is very close to
the variance induced by the noise (3%) so that no further learning is desirable.

It appears that both methods select the same weights in 5 stages, and select
identical pairs in 2 stages. Note that the third weight for either method has
great s; or ¢; compared with the two first so that the conclusion is relatively
stable: both methods are comparable in practice on this task.

In conclusion, the small differences observed may come from the different
procedures used to calculate the Hessian, or from the fact that it is hard in
practice to guarantee that the net is at a minimum, which is the essential hy-
pothesis of both methods. Current work aims at applying these methods to RBF
networks. -
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