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Abstract. The paper is devoted to show that there are simple and accurate
ways to compute a sigmoid nonlinearity in digital hardware by piece-wise
linearization. This is done as the computations involved are complex, but even
more interesting, for the data compression performed by the sigmoid, which
can half the number of Boolean functions to be further implemented. We detail
such an approximation algorithm, and analyze its accuracy, showing im-
provements over the previous known algorithms. The algorithm uses only ad-
ditions/subtractions and shifts (multiplications by powers of 2), supporting our
claim of “simplicity”.

1. Introduction

One of the difficult problems encountered when implementing artificial neural
networks in digital hardware is the nonlinearity used after the weighted summation
of the inputs. In this paper we shall consider only sigmoid activation functions like
the family of sigmoids drawn in figure 1, and discuss on two related “complexity”
aspects:

Fig. 1. 3D classical sigmoid function F&xT).
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Fig. 2. Sum-of-steps approximation [5]: a) rough sigmoid; b) the errors.

e first, the computation of the classical sigmoid is quite complex
1 1
J&D = ——-
1+e™T

where T is the “temperature” parameter (from thermodynamic-like functions);

e second, the input-output mapping done by the sigmoid is in fact a data compression
which, for the required precision reported in the literature [7], roughly halves
the number of functions to be implemented.

The classical digital solutions for implementing the sigmoid are either look-up tables
[11], or truncation of Taylor series expansion. The second alternative can further be
subdivided in: sum of steps [1,4,5], piece-wise linear [2,8,10,14,15], combination of
the previous, or others [12,13].

The best known results for sum-of-steps approximations reported in literature have
errors of £8.1% [4,5] (see figure 2), and * 13.1% [1]. Previous known piece-wise
linear approximation have *5.07% [8], or £4.89% [10], while the best known
approximations are = 2.45% [12] and £ 1.14% [6]. Deville’s solution [6], while achiev-
ing the lowest error, is also the only one to use floating-point multiplications, which
makes it far too complicated for a practical VLSI implementation.

2. Improved Precision by Piece-Wise Linearization

The starting point is the algorithm proposed by Pesulima [12]. We show how an
exponential can be computed by a piece-wise approximating algorithm. By linking
these two methods, a piece-wise approximation algorithm for the sigmoid which uses
only very simple operations (additions/subtractions and shifts) can be built.

2.1 Fitting the sigmoid by two exponential

A good approximation of the classical sigmoid [12] is based on a two-exponential-
-fitting: one for the negative part of the real axis, and one for the positive part (the
same result has been later thoroughly mathematically detailed in [2]):

w271 (
2 =5 = Y for x<0
0= — S for x>0'
2.27"

For T = 1, g(x) can be seen in figure 3, where the classical sigmoid function has
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Fig. 3. (a) classical sigmoid (circlrs) and g(x); and (b) the difference between them S(x).

been plotted for comparison. The differences are only 6 <+ 0.0245 for this continuous
approximation. If we now quantize g(x) (i.e. sum of steps approximation of g(x)),

the errors increase to more than + 22%! Instead we can approximate 2* by piece-wise
linearization (all the other operations are subtractions or divisions by 2).

2.2 Piece-wise linear approximation of an exponential

A “log-like” algorithm which does a piece-wise linearization of the logarithmic func-

tion has been proposed [16] and also used [15]. If x is represented in base 2 as:
X=Xy Xy oo Ky o Xy Xp o Xy = ;‘fxi-Zi, 3

then:

4
log,x = LOG-LIKE(x) = (m—1) + OQeX, ;... %X ;X ;... Xy @

where m— 1 is the position of the MSB (most significant bit). The addition in the
above equation is just a concatenation, as what we add is the fractional part of x to
an integer.

Example: log,56 = log, 111000, = 5,,+ 0.11000, = 101,+ 0.11000, = 101.11000, =
=575 = 5.803.

The algorithm can be reversed to compute an “exp-like” function [3]. For the particular
case when the base is 2:

2 = EXP-LIKE (%) = 2+ (x-lx})- 2% )
where Lx] is the integer part of x, and x~Lx/| is the fractional part of x, or:
2 = EXP-LIKE (x) = 2mtm2 % 4 0 g x, X, ... x, X 2wt 2T ©

from which it can be seen that the exponential is divided in:

e compute the exponent for the integer part (only shifts are needed), and
¢ add the fractional part properly shifted (the multiplicand being a power of 2)
as a correction term.

Example: 2525 = 2101012 — 910140012 - 510129 4 g015) = 100000, 1.015 =
= 101000, = 40 = 38.054.

We will not go into details, but it is obvious that what this algorithm does is a linear
approximation between integers (the correction terms varying linearly). The hardware
requirements are minimal (shift register, subtracter, few additional logic gates [9]).
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3. Precision Analysis

A thorough analysis of the range where the differences between the classical sigmoid
function and the proposed piece-wise linear approximation of the two-exponential-
-fitting lay, has been pursued. The results can be seen in figure 4. We have considered
k, the number of bits from the fractional part of x use for computing the correction
term in eq. 3, as parameter. The value of k has been varied between 0 and 5. If
k=0, the algorithm is doing no linearization at all as the correction term will always
be O (it is in fact a sum-of-steps approximation). If k grows, the set of curves come
more and more closer to the smooth shape of the classical sigmoid. For k=123
the staircase effect is still visible, but, already for k=4 it starts disappearing, and
the piece-wise linear approximation takes shape. Meanwhile the differences
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Fig. 4. Succesive approximations of the classical sigmoid by piece-wise linearization:
(a) with no bits for the fractional part; (c) with two bits for the fractional
part; (e) with four bits for the fractional part, and the differences 8(x) for
these approximations: (b) with no bits for the fractional part; (d) with two
bits for the fractional part; (f) with four bits for the fractional part.
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Fig. 5. The maximum absolute value of the differences between the classical sigmoid
and the piece-wise linearization of the two-exponential-fitting, plotted versus &.

8(x) = flx) — g(x) between the classical sigmoid function and the piece-wise lincariza-
tion of the two-exponential-fitting are more than tenfold reduced (from +22% in
figure 4b, to 2% in figure 4f). The maximum absolute value of these differences
remains almost constant for k=5 (the minimum being 0.0184...), such that the error
interval settles to & < + 0.019. Figure 5 presents this decrease of the maximum absolute
differences versus k. Interesting to note is that the errors (+ 1.84%) have dropped
under the ones for the continuous approximation (+2.45%), the explanation being
that we are in a lucky case where the piece-wise approximation of g(x) falls between
g(x) and flx).

This support the claim that 3 bits are needed in the fractional part to obtain a very
good approximation for the classical sigmoid (see also figure 6, and compare it with
figure 2).

4, Conclusions

Piece-wise linearization can be used for approximating sigmoid functions as increasing
the accuracy over sum-of-steps approximations with very little hardware overhead.
The data compression done by the sigmoid can thus be used to reduce the needed
number of Boolean functions to be implemented, as compared to a direct digitization.

Further research should be concentrated to find similar efficient approximations for
the derivative of the sigmoid (without using multiplication), needed for “leaming”.

(b) A%, ’
Fig. 6. (a) piece-wise approximation g(x.T) for k=4: (b) the diference 8(x,1) — same
scale like in figure 1.
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