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Abstract: In this paper, we investigate the local stability of the diagonal recurrent

neural network (DRNN), a particular case of recurrent neural networks, in which a

recurrent neuron only possesses a self-feedback connection. The local stability

conditions for a DRNN are presented. Subsequendly it is shown how the extent of
" stability can be investigated in terms of the equilibrium state's region of attraction in

state space. Then, some examples are given to illustrate the stability problem of

diagonal recurrent neural networks.

1. Introduction

One of the most attractive properties of neural networks is their input/output mapping
capability. In identification and control, we usually have to deal with the problem of
building input/output nonlinear dynamic models. In these cases, the application of
recurrent neural networks (RNN) to construct a system model is more appropriate than
using feedforward neural networks (FNN) which are widely applied to investigate the
static properties of the systems.

Usually, the architecture of a fully connected recurrent neural network is very
complicated. Recently, Ku et. al. (1992) have proposed a rather simple structure of RNN
called the diagonal recurrent neural network (DRNN), which only contains a hidden
layer of dynamic nodes with self-feedback connection, without any interconnection with
the other nodes in the same layer. This kind of local recurrent network has been proved
to be rather effective for real-time control (Ku et. al., 1992) and dynamic identification
(Tan and De Keyser, 1993).

Since the DRNN includes feedback loops, the stability of the network is an important
issue which certainly affects the learning capability of the DRNN. In experiments, we
found that, in some cases, the neural models failed due to instability. Thus, the stability
analysis is the aim of our paper. In section 4, some examples are given to demonstrate
the stability problem of diagonal recurrent neural networks.

2. Diagonal Recurrent Neural Network
The architecture of the diagonal recurrent neural network is described as follows:

x()=s{n D) =5}V, w,, x(-D)] @

FO=X" (W @

where ¥ is the output of the neural network; X(t)e Rtis a state vector; I(t)e R®is an input
vector; We R" as well as V,e R" are weight vectors; v, is the recurrent weight of the ith

*On leave from Guilin Institute of Electronic Technology, PRC

217



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 217-222

hidden node; and s(.) is a sigmoid function,i.e.

s(2 17¢7 @)
1+e™*

In identification and control, we usually use two kinds of neural network models which
are respectively called the series-parallel model (SPM) where I)=[y(t-1),....y t-n),u(t-
1),..,u(t-n)]", and y and u respectively denote the system output and input, and the

parallel model (PM) where I(t)=[9(t-1),...,9(t-ny),u(t-1),...,u(t-n‘,)]T (Narendra and
Parthasarathy,1990).

3. Local Stability of the DRNN

Since the hidden layer of the DRNN has feedback connections, we may meet the
stability problem in training or in model validation. If the network is unstable, it will
lose its learning capability.

First we consider the PM network. Let {u(t)} be zero. Then the autonomous dynamic
equation of the network becomes

x()=slv,,x D) +2-3‘vl.).y“(t PI=5Tw, Zv 5, (15) o, By, 5,04, 20D @
J fa i1

It is obvious that in this case the network has the structure of a fully connected recurrent
network . Define

2,850, o2, (V25,1 3 2, OBR, 1), .o 2, (D2, (1-1)
and

Z(0B1z, () 0 2,175 3 Z,OR 2, (0, s 2, OT -

Then we have
z,,(t+)=2,(9), ..., 21, 4(t+) =z, (1), zlu,(t+1)=s[Zl(t), e Z,(0),B,]

20 (t+1)=2,(0), vy 2y, (4 41)=2,, (1), 2, (441)=5[Z,(8), ... Z,(),B,)

......

z, (t+1)=2,(9), ..., 2, _l(t+l)=zm'(‘), zM’(t+l)=s[Zl(t), e Z,(0,8,]

where B; (i=1,..,h) are a new set of weight vectors composed from the components of
V, (i=1,...,h), and from W, and where with a slight abuse of notation s[Z,(t),...,Z,(t),8.]
means that the argument of s(.) is a linear combination of Z(t)...Z,(t) with coefficients
taken from the vector B,. It is assumed that s(.)e C'(E), (r>1), where E is an open subset
of R" which contains the equilibrium point Z,. The linearized system around Z, is
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Z()=D-Z2%) (€))

where Z'()=[Z",(®),..., Z°",()]" and Dﬁ[&Z(t+1)/aZT(t)]H_ is a Jacobian matrix. According
to the linearization principle (Vidyasagar, 1993), the system (4) is asymptotically stable
in the neighbourhood of Z, if the system given in (5) is asymptotically stable , i.e. the
matrix D has all its eigenvalues in the open unit circle ( |z |<1} on the z plane. The
system (4) is unstable around the equilibrium point if the matrix D has at least one
eigenvalue located outside the unit circle { lz |>l].

For the SPM network, if we let I(1)=0, each state equation of the system (1) only
contains a single self-recurrent state variable. In this specific case, the Jacobian matrix
D becomes

D=diag[s(n)v, ,.+1""’s'(" DVnal (6)
where [n,,...n,]” represents the network’s equilibrium state. Therefore the stability
condition for the SPM network within the neighbourhood of the equilibrium point is

lsn)v, . l<1 501,00 M

For the sigmoid function (3), the maximum value of s'(n;) is 1/2. So a sufficient stability
condition for the SPM network is given by

1 <2:ia,.h ®)

Iv, S et
,I<
et max[s(n)]

When the Jacobian matrix D has its eigenvalues inside the unit circle then the extent of
stability can be studied in terms of the equilibrium state's region of attraction in state
space. To do this and rewrite the state equation (4) as

Z°(141)=D-Z°(1) (Z(©))

where h(.) represents the higher order terms around the equilibrium point. Suppose the
higher order terms of the above equation satisfy

| [TrA ()] R 7A G N YA O] B3 10

where o and b are positive constants. Consider a quadratic Lyapunov function

V()RZ(5)-P-Z%r) 1)

where P is a positive definite and symmetric matrix. The difference of the Lyapunov
function is

AV(r+1)F (1) V()= [DZ* (@ PIDZ*#(ZN-Z PZ°
=Z°DTPDZ " (ZPh(Z")Z D Ph(Z) " (Z)PDZ*-Z"PZ*
where for simplification we denote Z'(t) as Z". From the relation

(12)

(DZ*-h(Z %) P(DZ*-H(Z )20 (13)

219



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 217-222

we derive

ZD'PDZ ' (ZVPH(Z)2Z DT PH(ZY)+h(Z)PDZ* a4
Considering the assumption (10) and the fact that P is positive definite and symmetric,
we obtain

K(ZYPR(ZISA (PR (ZINZIS0A_(P)Z*TZ* |Z*0)|<b as)
where A, (P) is the maximum eigenvalue of P. Substituting the inequalities. (14) and
(15) into egn. (12) yields

AV(@+1)<Z*T((D"PD -P)+D"PD 20\ __(P)-1NZ° (16)

Since all eigenvalues of D lie inside the unit circle, the Lyapunov equation
2D"PD-P=Q ' 17
possesses a unique positive definite solution P for any chosen symmetric positive definite

Q (Vidyasagar, 1993) . Now
AV(E)SZTT[-Q0o% (P)IZ° ;1Z°0Ib (18)

To ensure the matrix on the right hand side of the above formula is negative definite,
we should have

o< | 2@ 19
(P
Let

V. 2min{Z* Pz} 01D (20)

Then the set Gé[Zq(t)PZ'(t)<Vm] is a region of attraction of the network's equilibrium
state Z,. Finding V., is a standard problem of constrained minimization. So G can be
found by combining (10), (17), (19) and (20).

4. Examples
In the following, we shall discuss some examples illustrating the stability problems
which may arise in recurrent networks.

Example 1: Consider an autonomous PM diagonal recurrent network with state
equations

x,()=5[-0.0176x,(¢-1)40.2353§(r-1)]
x () =s[-3.95x,(t-1)25(t-1)) 4 @n
F(9)=0.5x,() +0.85x,(¢)

The equilibrium state is x,(t)=x,(t)=0. At this equilibrium state, s'(n) reaches its
maximum value s'(n,),,=0.5. The corresponding eigenvalues of the Jacobian matrix are
0.0911 and -1.1661. So the neural network is unstable. Fig. 1 shows that persistent
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oscillations occur in the response.

Example 2: The neural network of this example is an autonomous SPM diagonal
recurrent network given by eqn. (22). Suppose k=-2.15. In this case, it is obvious that
the stability condition (8) is not satisfied. One of the eigenvalues of the Jacobian matrix
at the system's equilibrium state equals -1.075. Thus the neural network is unstable. Fig.
2a) displays the persistent oscillation of the network's response.

x,(£)=5[0.25x,(¢-1)]
x,()=slk-x,(t-1)] (22)
$6)=0.65x, (1) 40.45x,(1)

For k=2.15, instead of converging to zero which is the output of the network at the
equilibrium point, the response of the neural network shows a monotonic increase at the
beginning, then it remains stuck in the saturation region. This behaviour is illustrated in
Fig. 2b). The reason of this phenomenon is that the Jacobian matrix has an eigenvalue
at 1.075.

Both examples show that the diagonal recurrent neural network becomes unstable if its
architecture parameters violate the stability conditions of the previous section. We notice
that the instability of the network does not lead to limitless divergence but to saturation
or persistent oscillation due to the boundedness of the sigmoid function. The result of
instability of a network is that its learning capability is lost.

5. Conclusion

Though the diagonal recurrent neural network is more useful for studying the dynamics
of nonlinear systems than the feedforward neural network, the feedback connections of
this neural network may lead to instability. This paper has discussed this phenomenon
and has given some rules to check the stability of the diagonal recurrent neural network.
The examples have shown that the character of the sigmoid function causes saturation
or persistent oscillations in the output of the unstable neural network.. The stability
analysis of the DRNN may provide some insight in the problem of the local feedback
stabilization of diagonal recurrent neural networks.
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Figure 1 Autonomous response
of a DRNN (Example 1)
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