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Abstract
Many theoretical papers are published about the Kohonen algorithm.
It is not easy to understand what is exactly proved, because of the great
variety of mathematical methods. Despite all these efforts, many prob-
lems remain without solution. In this small review paper, we intend to
sum up the situation.

1 Introduction

The very popular Kohonen algorithm was originally devised by Teuvo Kohonen
in 1982 [12] and [13], as a model of the self-organization of neural connections.
It is well known that in many cases nearby stimuli are coded on nearby cortical
areas and the Kohonen algorithm is able to construct such mappings. The
construction is progressive, as soon as the inputs are randomly presented, the
weights are updated to reinforce the proximity between the input distribution
and the discrete configuration of the weights. There is self-organization because,
as far as possible, neighbors in the input space are mapped onto neighboring
units. So the algorithm leads to an organized representation of the input space,
from an initial complete desorder. As a matter of fact, the adaptation of the
weights can be decomposed into two phases. When everything works well, one
can observe self-organization (or ordering) first, and after that, convergence of
the weights in order to better quantify the input space. For this second phase,
the adaptation parameter has to decrease to 0.

These properties have been used in numerous practical applications that it
is impossible to enumerate here. Let us only mention speech recognition (Koho-
nen, 1989, [15]), robotics (Ritter et al., 1989, [24]), computer vision (Oja, 1992,
[20]), combinatorial optimization (Fort, 1988, [10]), classification (Kohonen,
1984, [14]), and so on. In most cases, the main feature is the self-organization
property. But for other applications like automatic meshing (Sarzeaud et al.,
1990, [28], or numerical integration (Pagés, 1993, [21]), the convergence prop-
erty and the asymptotic values are the most worthwhile.

_ Despite the large use and the different implementations in multi-dimensional
settings, the Kohonen algorithm is surprisingly resistant to a complete math-
ematical study. As far as we know, the only case where a thorough analysis
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could be achieved is the one dimensional case (the input space has dimension
1) for a linear network (the units are disposed along a one-dimensional array).
A sketch of the proof can be encountered in the original Kohonen papers in
1982 and in his book in 1984, [12], [13], [14]. The first complete proof of the
self-organization property and of the convergence was established (for uniform
distribution of the inputs and a step-neighborhood function) by Cottrell and
Fort in 1987, [4]. Then, these results were generalized to a very large class of
input distribution by Bouton and Pagés in 1992 and 1993, [1}, [2], [3]. Other
papers deal with a more general form of the neighborhood function : in this
framework, Erwin et al. (1992) have sketched the extension of the proof of
self-organization [8] and studied the influence of the neighborhood function [7),
and Fort and Pagés in 1993 [11] have rigorously proved the convergence almost
sure, after self-organization.

For higher dimensions, the results are only partial. Two main difficulties can
explain this situation. First, until now, nobody has been able to define what is
a correctly ordered configuration in dimension greater than I which would be
stable for the algorithm : the grid configurations that Lo et al. proposed in
1991 or 1993, [18], [19] are in fact not stable. Secondly, Erwin et al. in 1992
[8] have proved that it is impossible to associate a global decreasing potential
function to the algorithm, as long as the probability distribution of the inputs
is continuous. They extend the first results of Tolat et al. in 1990, [30], to
propose a set of single-unit energy functions, which give some description of
the individual behavior. Before that, Ritter et al. in 1986 and 1988, [22], [23]
have thrown some light on the stationary state in any dimension, but they study
only the final phase after the self-organization, and do not prove the existence
of a stationary state. Recently, in 1993, Fort and Pagés [11] give some results
in higher dimension, but these results are very partial.

On the other hand, some theoretical results are available in different con-
texts. In 1992, Thiran and Hasler [29] give a proof of self-organization in
dimension 1 for a large class of neighborhood function, when the input signals
and the weights are quantized in discrete values. In 1991, Ritter et al. [25],
introduce a potential function when the input signal can only take values from
a finite discrete set, so that the Kohonen algorithm is a stochastic gradient
descent on this function, at least for each constant value of the neighborhood
function. For this discrete case, in 1993, RuZi¢ka [27] shows that this potential
function is not differentiable, but gives conditions on the adaptation parameter
and the neighborhood function for which the convergence of the algorithm to a
stationary point is proved. At last, in 1992, Pagés [21] completely studies the
so-called 0 neighbor algorithm which always corresponds to a gradient descent
procedure.

2 The Kohonen algorithm

The network has one layer of n units arranged in a lattice, (generally in a one-
or two-dimensional array). The set I = {1, ,..., ,n} of the units is endowed
with a topological structure provided by a neighborhood function A defined
on I x I. We consider a symmetrical and decreasing neighborhood function,
such that A(%, j) = A(4,1) depends only on the distance between ¢ and j in the
array, (| i—j | if the array is one-dimensional. A(%, j) decreases with increasing
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distance between i and j, and A(3, i) is usually equal to 1.

The input space € is included in R?. The units are fully connected to the
inputs, and X;; represents the strengh of connection between unit i and the
7t component of the input.

The trick consists in representing the unit ¢ by the vector

X; = (Xa1, Xia, -+, Xid).

By normalizing, if necessary, the vectors X;, Xs, ..., X, we can represent
them in the same space 2 as inputs. Then, the network state at time ¢ is given
by

X(t) = (X1(t), Xa(t), ..., Xn(t)).

For a given state X, the network response to input w is the winner unit
ig, the closest unit to input w. Thus, the network defines a map ®x : w +—s
i(w,X), from Q to I = {1, ..., n}, and the goal of the learning algorithm is
to converge to a network state such as the corresponding map will be topology
preserving. For a given state X, let us denote C;(X) the set of the inputs such
that i is the winner unit for them, that is C;(X) = ®%'(i). The set of the
classes C;(X) is the Euclidean Voronoi tesselation of the space § related to X.

The algorithm is as follows :

e at time ¢ = 0, X? is chosen at random,
e if X(t) is the current state,

— present input w(t + 1) chosen in  according to a distribution P,
— compute the best matching unit 1 by

dist(X;, (t), w(t + 1)) = Ir}in dist(X;(t), w(t + 1))

— update the weights by
Xi(t +1) = Xi(t) — &2 A(do, i)(Xi(t) — w(t + 1))
for each i € I.

This rule strengthens the similarity between the input w(t + 1) and the
responses of unit iy and of its neighbours.

The essential parameters are the adaptation parameter €;, which is “small”
and positive, constant or decreasing with time, the neighborhood function A,
which can be constant or time dependent, the dimension d of the input space,
the probability distribution P.

As the inputs are i.i.d. random variables with probability distribution P on
Q, the network state at time ¢ is a random Q"-valued vector X (t) displaying
as :

X(t+1) = X(t) — & Hw(t + 1), X(2)) 1)

Notice that according to (1), X(t) is always a special case of stochastic
process, that is a Markov chain, which is homogeneous in time if and only if &,
and A are time-invariant.
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3 Description of the mathematical tools

As we observe before, one has to separate two kinds of results : those related
to'the self-organization, from those related to convergence after organization.
In-.both cases, almost all the results have been obtained for a time-invariant
neighborhood function.

To analyse the self-organization, one uses mainly Markov chain techniques.
One tries to prove that there exists some absorbing set (which could be qualified
as ordered), which the process X(t) enters with probability 1 after a finite time,
(4], [1], [8]. A very useful way to find these absorbing sets can be to put in
evidence a function which decreases along each trajectory of the process [9], [6].
This function can be viewed as an energy funclion, whose minima correspond
to what we call ordered states and are the absorbing sets.

As to the convergence phase, the techniques depend on the kind of desired
convergence. For the elmost sure convergence, the parameter €; has to de-
crease to 0, and the form of the equation (1) suggests to consider the Kohonen
algorithm as a Robbins-Monro [26] algonthm The usual hypothesis on the
adaptation parameter is then :

) e =+00 and Y el < +oo ®)
1 t

One can observe that all the possible limit states z* are solutions of
h(z) =

where h(z) = E(H(w, z) = [ H(w, ) dP(w) is the expectation of H(., z) with
respect to the probability measure P. Some global assumptions on the function
h (and on its gradient) are needed to ensure the almost sure convergence. If
only some local assumptions on the function h are available, one can follow the
“Kushner and Clark” way which is based on the study of the equilibria of the
average ordinary differential equation (O.D.E.) [17]

dr
Many problems are encountered : how to compute these equilibria,-are they
unique, are they attractive 7 In the best of cases, it is then possible to get a
weakened convergence (called K&C' convergence), which consists in ensuring
the almost sure convergence to some equilibrium z*, as long as the process X (t)
comes back infinitely often in some attracting area of z*.

Another method consists in trying to put in evidence that the process de-
fined by (1) can be viewed as a stochastic gradient descent associated with some
potential function, [30}, [21], [25], [8]. In that case, if (2) is verified, it is sure
that the process converges towards a zero of h. But nothing ensures automat-
ically that these zeros are minima, and even if they are minima, they do not
necessarily correspond to ordered situations, [6]. Moreover, it also happens that
the potential function can be differentiable not everywhere.

If the convergence in distribution is desired, that is the establishment of
some invariant probability measure, (and not the stabilization in some fixed
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values), the adaptation parameter has to remain constant and the relevant
techniques are Markovian.

In spite of the great variety of mathematical tools and unfortunately, the
set of known results is very small with respect to the set of possible answers.
In the following sections, we try to sum up the theoretical available results, in
each main case.

4 The self-organization for dimension 1

In this case, the input space is [0, 1] (the dimension d is 1) and the units are
arranged along a linear array. The neighborhood function A is supposed to
be decreasing with the distance between units. The stimuli distribution is
continuous on [0,1]. This means that it does not charge any point, and it is
true for any distribution having a density. Let us define F;f = {z € R/0 <
£ <22<..<zp<l1}and Fy ={z€R/0<zpn <2Zn1<... <271 < 1}.
One can see that the number of inversions (badly ordered 3-uples) is a non
increasing function associated to the algorithm, which is 0 on FY U F, .
In [4}, [1], [11], the following results are proved :

Theorem 1 (a) The two seis F;} and F,; are absorbing sels.

(b) If € is a constant, and if A is the step function defined by A, ) =14ff
| i =3 |< 1, the re-ordering time 7, that is the hilting time in FYUuF;, is
almost surely finite, and 3X > 0, s.1. sup,cpon Es(exp(Ar)) < +o0, where
E, is the expectation given X(0) = z.

Remarks : i) The inequality gives an upper bound of the re-ordering time.

ii) In [8], the arguments to extend the part (b) to the general decreasing
neighborhood function case are sketched.

iii) With the same arguments as in [2], it is possible to prove that if ) &; =
+00, then Vz € [0, 1], Proba (7 < o0) is positive, but not sure.

iv) The hypothesis on the distribution P (continuity) seems minimal : in
fact, if P is uniform with two values a and b, 0 < @ < b < 1, and n = 4, there
is no re-ordering if the initial value X(0) = z satisfies 0 <a < z2 <21 <z3<
za<b< 1

5 The convergence for dimension 1

In [4] for the uniform distribution, [1] and more recently [11], the almost sure
convergence is proved, according to the next theorem :

Theorem 2 Let us assume that ¢ satisfies the condition (2), and that the
neighborhood function is decreasing enough. Assume also that the support of the
probability P is [0,1] (i.e. there is no closed subset in [0, 1] with probability 1).
Then

(a) The mean function h has at least a zero z* in F;f

(b) Let the input distribution P have a density f such that f>00n]0,1] and
let In(f) be strictly concave (or In(f) be only concave, with limo+ f + limy- f
strictly positive), then every stationary poini z* is attracting. So if X(0) € Fr,

X(t) 23 z* in the Kushner & Clark sense.
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(c) If the input distribution is uniform on [0,1], z* is unique and X(t) =5 z*,
if X(0) € Ff.

* The exact condition for A is : (n > 2and A(4,j) < 1,for | i—j |=
lyor(n >3 and A(i,j) < 1,for | i—j [=2) or (n > 5 and A(3,j) < 1, for |
i~j|=3).

Remarks : i) Almost all the usual probability distributions (truncated on
(0,1]) have a density such that In(f) is concave

ii) The unicity of the equilibrium (in F}) is proved only for the uniform
distribution

ili) The same properties hold for F,;

iv) The condition (2) is essential, because if ¢; decreasing and ¥, &; = +0o0,
there is only convergence in probability

v) It is possible to build counter-examples with no In-concave density and
where convergence to the stationary point does not hold. (See section 6).

In [4] and {2], the convergence in distribution is proved, for a constant ¢, a
two-neighbor step function, and assuming some condition on the distribution P
(it has a lower bounded density at least on a small open set in [0, 1]).

6 The 0 neighbor case

This case is characterized by choosing the neighborhood function A(i,5) = 1
if i = j, and 0 elsewhere. There is no topology on I, and no reordering. This
algorithm is known as a “space quantization algorithm”. The dimension d of
the input space can be greater than 1.

The main result is :

1) The O-neighbor algorithm derives from the potential

V(z) = / min lz; - w|[*dP(w)

it) If the distribution probability P is continuous, or for example has a
density f,

z:n z; — wl* f(w)dw
V(z) ,;/c.m” I £ (w)d

V can be interpreted as an intra-class variance. But in fact, this potential
function is not everywhere differentiable and the complete analysis is not easy
[24], [21]. There are many quilibria [24], and some of them can be repulsive
[21]. There is no hope to state a global almost sure convergence, except in the
uniformly distributed case. In this case, one has :

Theorem 3 Ifd =1 and the stimuli are uniformly distributed on [0,1], then :
X(t) 25 2* = ((2i - 1)/2n)1<i<n

In the general case if the density is In-concave, with f(04)+ f(1-) > 0, (or
strictly In-concave, cf Theorem 2) we have this partial statement [21],
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Theorem 4 (a) Ifd =1, V has only strict local minima and X(t) converges
almost surely to one of these local minima

(b) When d > 1, X(t) converges, in the Kushner & Clark sense, to a zero of h
(c) For any d, let n be a variable, V, the corresponding potential and z, one
minimum of Vp. Then, the empirical discrete probability measure :

Pn = 2":19(0,-(::;))5,;

i=1
converges in disiribution to the probability measure P, when n — oo.

‘The property (c) properly defines the quantization property, and explains
why the 0-neighbor algorithm provides a skeleton of the input distribution.

Tt is easy to build a counter example when the density f is not In-concave: let
g be a symmetric probability density, such that g(u) = g(1 —u). Let us consider
Fn : fa(u) = g(nu — i), for u € [i/n, (i + 1)/n]. Then z* = {(2{ - 1)/2n),i =
1,...,n} is an equilibrium. But even if X(t) converges when 9(0) < 1,it is not
true when g(0) > 2n/(n — 1), because in that case z* is repulsive.

The convergence in distribution is true, with constant adaptation parameter
¢, when the distribution P has no hole and has a density which is lower bounded
at least on a small open set.

7 The discrete case

In this case, there is a finite number N of inputs {w;,ws, ..., wn} and the
input distribution is discrete and uniform. It is the more useful setting for
most practical applications, like classification or data analysis.

The main result ([16], [24)) is that for constant neighborhood (or for suitably
decreasing ones [27]), the algorithm derives from the potential

V@ =g T (L AG- e - wl?)

i=1w€Ci(z) j=1

V is an intra-class variance extended to the neighbor classes. But this
potential is not a smooth function and its study is lenghthy. The complete
analysis is not achieved, even if the discrete algorithm can be viewed as a

stochastic gradient descent procedure. The most complete results can be found
in [27].

8 The multidimensional extension

When the dimension d is greater than 1, the available results are very few.
The main reason seems to be the fact that no absorbing sets have been found.
The configurations which are monotoneous in each coordinate are not stable,
contrary to the intuition. Some people think that the Kohonen algorithm in
dimension greater than 1 could correspond to an irreducible chain, that is a
chain for which there always exists a path with positive probability to go from
anywhere to everywhere. That property would imply that there is no absorbing
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set at all. Actually, as soon as d > 2, the O-neighbor algorithm is an irreducible
chain.

Let us consider I = I} x I x ... x I; a d-dimensional array, with I, =
{1,2,...,m}, for 1 <1< d. Let us assume that the neighborhood function is
a product function (for example eight neighbors for d = 2) and that the input
distributions in each coordinate are independent, that is P = P, ®...® Pa.
Finally, let us suppose that the support of each P; is [0,1].

Let us call grid states the states z* = (2f,,1 < 4 < n;,1 <1 < d), such that
forevery 1 <1< d, (X7;,1 < 4 < ny) is an equilibrium for the one-dimensional
algorithm. Then the following results hold [11] :

Theorem 5 (a) The grid stales are equilibria of the d-dimensional algorithm.
(b) For d = 2 and 0 neighbor, the grid equilibria

z* = ((2i1 — 1)/2n1, (262 — 1)2n,)

, for i1 € I, 43 € I, with n = ny ny, and P the Uniform distribution U([0, 1)?)
is never stable when n,/n; ¢ [\/3/3,/3].

That is all for the moment. In [11], the gradient of A is computed in the
d-dimensional setting. In [23], the convergence is studied after re-ordering,
assuming that the organization is over, although there is no proof of it.

9 Practical and provisional remarks

In spite of, or because of the mysteries which remain to be understood, the
practicians have developed a great know-how. For example, it is well-known
that to accelerate the convergence of the algorithm, the adaptation parameter
and the neighborhood have to be large at the beginning. On the other hand,
when ¢ decreases to 0, it is possible to get stuck in a “metastable state”.
In order to avoid it, it is very useful to have at our disposal some criterium
which approximately indicates whether the topology preserving property holds.
See for example [5] or [31] which propose such indices. It would be probably
interesting also to study the variations of the function V/(z), even if it is not a
true potential function. ‘

Two perspectives are promising : to carry on the work without respite as a
challenge, or to define other self-organization algorithms which would be more
tender.

References

[1] C.Bouton, G.Pages, “Self-organization of the one-dimensional Kohonen al-
gorithm” and “Convergence (a.s. and in distribution) of the one-dimensional
Kohonen algorithm”, Proceedings of Aspects théoriques des réseauz de neu-
rones, Congres Satellite du Congrés Européen de Mathématiques, Paris, 2-3
Juillet 1992.

[2] C.Bouton, G.Pages, “Self-organization of the one-dimensional Kohonen al-
gorithm with non-uniformly distributed stimuli”, Stochastic Processes and
their Applications, 47, 249-274, 1993.

242



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 235-244

[3] C.Bouton, G.Pages, “Convergence in distribution of the one-dimensional
Kohonen algorithm when the stimuli are not uniform”, to appear in Ad-
vanced in Applied Probability, 26, 1, March 1994.

[4] M.Cottrell, J.C.Fort, “Etude d’un algorithme d’auto-organisation”, Ann.
Inst. Henrt Poincaré, 23, 1, 1-20, 1987.

[5] P.Demartines, “Organization measures and representations of Kohonen
maps”, in : J.Hérault (ed), First IFIP Working Group 10.6 Workshop,
1992.

[6] M.Duflo, Méthodes récursives aléatoires, Masson, Paris, 369 p., 1990.

[7] E.Erwin, K.Obermayer and K.Shulten, “Self-organizing maps : stationary
states, metastability and convergence rate”, Biol. Cyb., 67, 35-45, 1992.

[8] E.Erwin, K.Obermayer and K.Shulten, “Self-organizing maps : ordering,
convergence properties and energy functions”, Biol. Cyb., 67, 47-55, 1992.

[9] W.Feller, An introduction to probabilily theory and its applications, Vol. 1
and 2, 374 edition, Wiley, 1968 and 1971.

[10] J.C.Fort, “Solving a combinatorial problem via self-organizing process : an
application of the Kohonen algorithm to the travelling salesman problem”,
Biol. Cyb., 59, 33-40, 1988.

[11] J.C.Fort and G.Pages, “Sur la convergence p.s. de ’algorithme de Kohonen
généralisé”, Note auz Comptes Rendus de I’Académie des Sciences de Paris,
t. 317, Série I, 389-394, 1993 (developed in Preprint SAMOS #29).

[12] T.Kohonen, “Self-organized formation of topologically correct feature
maps”, Biol. Cyb., 43, 59-69, 1982.

[13] T.Kohonen, “Analysis of a simple self-organizing process”, Biol. Cyb., 44,
135-140, 1982.

[14] T.Kohonen, Self-organization and associative memory, Springer, New York
Berlin Heidelberg, 1984 (374 edition 1989).

[15] T.Kohonen, “Speech recognition based on topology preserving neural
maps”, in : I.Aleksander (ed) Neural Computation Kogan Page, London,
1989.

[16] T.Kohonen, “Self-organizing maps : optimization approaches”, in :
T.Kohonen et al. (eds) Artificial neural networks, vol. II, North Holland,
Amsterdam, 981-990, 1991.

[17] H.J.Kushner, D.S.Clark, Stochastic Approzimation for Constrained and
Unconstrained Systems, Volume 26, in Applied Math. Science Series,
Springer, 1978.

[18] Z.P.Lo, B.Bavarian, “On the rate of convergence in topology preserving
neural networks”, Biol. Cyb, 65, 55-63, 1991.

243



ESANN'1994 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 20-21-22 April 1994, D-Facto public., ISBN 2-9600049-1-4, pp. 235-244

(19} Z.P.Lo, Y.Yu and B.Bavarian, “Analysis of the convergence properties of
‘topology preserving neural networks”, IEEE trans. on Neural Networks, 4,
2, 207-220, 1993.

[20] E.Oja, “Self-organizing maps and computer vision”, in : H.Wechsler (ed),
Neural networks for Perception, vol.1, Academic Press, Boston.

[21] G.Pages, “Voronoi tesselation, space quantization algorithms and numer-
ical integration”, in Proc. of the ESANNY3 Conference, Brussels, D Facto
Ed., (ISBN-2-9600049-0-6), April 1993, pp. 221-228.

[22] H.Ritter and K. Schulten, “On the stationary state of Kohonen’s self-
~ organizing sensory mapping”, Biol. Cybern., 54, 99-106, 1986.

[23] H.Ritter and K. Schulten, “Convergence properties of Kohonen’s topol-
ogy conserving maps: fluctuations, stability and dimension selection”, Biol.
Cybern., 60, 59-71, 1988.

[24] H.Ritter T.Martinetz and K. Schulten, “Topology conserving maps for mo-
tor control”, Neural Networks, from Models to Applications”, (L.Personnaz
and G.Dreyfus eds.), IDSET, Paris, 1989.

[25] H.Ritter T.Martinetz and K. Schulten, Neural computation and Self-
Organizing Maps, an Iniroduction, Addison-Wesley, Reading, 1992.

[26] H.Robbins and S. Monro, “A stochastic approximation method”, Ann.
Math. Stat., vol. 22, pp. 400-407, 1951.

[27] P.Ruzicka, “On convergence of learning algorithm for topological maps”,
Neural Network World, 4, 413-424, 1993.

[28] O.Sarzeaud, Y.Stéphan and C.Touzet, “ Application des cartes auto-
organisatrices a la génération de maillages aux éléments finis”, in : Proc. of
Neuro-Nimes, vol. 1, 81-96, 1990.

[29] P.Thiran, M.Hasler, “Quantization effects in Kohonen networks”, in :
Proc. of the Congreés Satellite du Congrés Européen de mathématiques sur
les Aspects Théoriques des Réseauzr de Neurones, Paris, 1992 (submitted).

[30] V.V.Tolat, “An analysis of Kohonen’s self-organizing maps using a system
of energy functions”, Biol. Cyb., 64, 155-164, 1990.

[31) S.Zrehen, F.Blayo, “A geomeiric organization measure for Kohonen’s
map”, in : Proc. of Neuro-Nimes, 603-610, 1992.

244





