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Abstract. In this paper we present a possibility to bring up the learning results
for different data sets which earlier were difficult or impossible to learn. We choose
the calculated. fractal dimension of the data set as the dimension of the selforganizing
map for guaranteeing the maps ability of topology preserving. Furthermore we explore
different states of the learning process and the final map for its fractal dimension and
get interesting results.

1 Introduction

Kohonen’s selforganizing map (SOM) which has been introduced by T. Kohonen
[1] has many applications. So the SOM’s algorithm is an efficient alternative to
traditional signal processing.

But there is still one big problem. There exists no common valid prove of
convergence for this efficient algorithm. A couple of theoretic works taggle with
this problem (e.g. [2]). But they are only valid in special cases:

o The input data have to be equally distributed.

e The map’s state must be near an equilibrium state means the adaptation
factor has to be already small.

o The map’s dimension is one.

In our opinion the input data set’s properties have to be considered. So there
exists data sets which are very easy to learn using a two dimensional map, e.g.
gas spectra [3] or VLSI process data [4]. Others are difficult or impossible to
learn, e.g. EEG data or pictures of PCB layouts what we are currently trying.
Probably these data sets require a greater dimension of the map.

The SOM’s main property is the nonlinear projection to the principal mani-
folds means finding a n-dimensional layer to approximate the input data. This
layer, represented by the geometrical dimension of the map is lower dimensional
than the input data set. If the dimensionality of the map is too low, the map tries
to approximate the higher dimension by folding itself into the input space. So
we have to determine the necessary dimensionality of the input space to avoid
this violation of topology preserving. Second a correct dimension of the map
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leads to better learning results. So for the most evaluation tools of the SOM like
spanning trees and component cards a correct topology preserving is urgent.

We calculate the information dimension, a method of nonlinear dynamics,
of the input space and the space represented by the weight vectors of the map
in different learning states. Topology preservation is measured with the waber
product.

2 Fractal dimension

Root of the matter is a method from the theory of dynamical systems, the cal-
culation of the dimension of attractors, characterizing the geometrical structure
of an attractor in phase space [5]. Because this number has often a noninteger
value it is called fractal dimension. We use this method to determine the scaling
behaviour of a given data set during decreasing partitioning of the phase space.
Transmitting this technique of nonlinear dynamics to a real data set M with
finite resolution is done by some simplifications [6].

In the embedding space of the data set M a set of volume elements V;(I) with
the characteristic size [ is chosen (e.g. { is the length of the edge of a hypercube),
which should cover the whole set M. Now the definition of the fractal dimension
is based on the following idea. Starting from a suitably defined property of M
which depends on V;(l), we look at the scaling behaviour .of this property in
respect to the size of the volume elements. The resulting scaling law provides
an abstract definition of a dimension. Different kinds of fractal dimensions are
available. '

Measuring the information dimension the number of points, determined by
the vectors, N;(I) in each volume element V;(!) are counted. E.g. if the points of
a given data set are arranged on a plain N;(!) is proportional to I?, leading to an
information dimension of 2. Bisection of the length of the edge of the embedding
cubes leads to a reduction of factor 4 of points. The scaling behaviour of the
information dimension d; is given as follows. Following the definition of the
information I({) by Shannon,

A(l)

10) == p®logm() 1)

where A(l) is the number of volume elements necessary to cover the whole data
set and p;(!) is the probability to find a point of the data in volume element i.
This results in the following definition of the information dimension d;:

)
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3 Topology measurement using the waber prod-
uct

The SOM’s topology preservation is measured with the waber product. The
main idea of this algorithm is to compare the neighbourhood relation between
the neurons with respect to their position on the map on the one hand (Q2(4,1))
and according to their stored weight vectors on the other (@1(4,1)). This leads
to the following formula,

k
P, k) = (T @:G,DQ:(G, ) * (3)
=1
where k means the k nearest neighbour, j the number of the actual neuron.

If there are no topological defects, @1(j,1), @2(j,!) as well as P(j k) have the
value 1. As a global criteria for characterizing the organization of the whole map
we sum all P(j,k):

N N-1
DY log(P(i, k) (4)

j=1 k=1

P -

waber N ( N 1))
So a value of 0 for Pyqper characterizes perfect topology preservation, a negative
value folding into the input space. N is the number of all neurons.

4 Results

4.1 Explorlng different data sets for their information di-
mension '

We explore different data sets of real applications concerning their information
dimension. The gas spectra and VLSI process data are easy to learn resulting
in good structured spanning trees and component cards. In contrast to that we
try many training cycles with a two dimensional map for the EEG data and the
PCB layout pictures. Variing the different training parameters like number of
processing units, number of training steps, heights and width of adaptation at
the beginning, we were not able to get good learning results.

Data set information dimension
Gas spectra 1.5
VLSI process 1.7
PCB layout pictures 5.4
EEG 5.7

Table 1: Different data sets and their information dimension

Considering table 1 the reason is a higher information dimension than 2. The
lower dimensional map tries to approximate the higher dimensional input space
by folding resulting in unstructered component cards.
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4.2 Different learning states, different map dimensions

Next we learn the EEG data set with SOMs having different dimensions and
calculate the waberproduct and the information dimensions in different learning
states. The results are shown in figures 1 and 2.
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Figure 1: The informationdimension for maps in different dimension during
learning
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Figure 2: The waberproduct for maps in different dimension during learning

Considering figure 1 though the information dimension of the EEG data set
is 5.7 the b dimensional map’s weight vectors are only able to achieve an infor-
mation dimension of 5.1 learning this data. Also a lower dimensional map is
able to achieve an information dimension of about 4.75 but at the expense of
the preservation of topology (figure ??). Considering the dynamics of learning,
while the geometrical dimension of the map corresponds to the fractal dimension
of the weight vectors the waber product is about 0. If the fractal dimension in-
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creases the waber product becomes negative, indicating, that the folding process
begins. The behaviour of the curves at the beginning characterizes the order-
ing of the weight vectors from the random initialisation. Second a map with a
lower geometrical dimension takes more time to achieve this higher information
dimension. So it is necessary to consider both, the information dimension and
the preservation of topology, to discuss the learning results.

5 Conclusion and further work

We look at different data sets and learning states of the SOM calculating their
information dimension and determine their ability of topology preservation by
using the waberproduct. Both is necessary to discuss a learning result. Lower
dimensional maps approximate a higher dimensional input space at the expense
of topology preservation.

In further work we will try to control the training phase. Choosing the
corresponding map with a dimension equal to the information dimension of the
data set we will stop the decreasing of width on the point when the map has
achieved the necessary dimension and only decrease the heights of the adaption
functions. Simulations have shown, that this strategy leads to the best learning
results means the lowest rate of topological defects.
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