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Abstract: We present a variation of Hassibi & Stork’s Optimal Brain
Surgeon [3] in the case of Radial Basis Function Networks that perform
density estimation. The theoretical framework of “constrained minimi-
sation of a second order expansion of the error” is adapted and presented

- in details. Practical issues are raised, and a few experiments are carried
out in the 1-D case.

1 Background and motivation

The classical technique of kernel density estimation, applied on a set of n points
drawn from an unknown true density, consists in putting a kernel centered at
every data point and then tune the width factor in some optimal way so as to
obtain the best estimator [2]. As this may become computationally prohibit-
ing with large databases, some pre-processing can be performed such as vector
quantisation (VQ) in order to reduce the size of the model (number of kernels).
From now on, what we call points or centers will refer to the relatively small set
of centroids that has been obtained by VQ or clustering.

Our goal will be, from a given fixed kernel estimator (same width for each
kernel) based on N points, to derive a smaller estimator, based on n points.
Thus we will need to provide a method for calculating the new centers from the
previous ones, as well as the width factor. We will have to ‘move’ the centers
and tune the width in order to compensate for the deletion of some kernels. We
propose to automatically select the centers that will be pruned according to a
density criterion.

A typical application of this kind of pruning would be dynamic resource re-
allocation on a constrained architecture. For example, when a new class appears
in a Bayesian classification problem, this method would automatically pick up
some kernels in previous estimators, slightly modify them, and make the kernels
available for an estimator of the new density. A multi-resolution scheme could
also be derived using this approach.

For a fixed kernel estimator, the output function can be written

- 1 < - C;
fa@) = =2 S K(F5)
n =1 n

where d is the dimension of the input space. h, is the ‘optimal’ width for n
kernels and can be written

h, = Df,K,d . n_l/(d+4) (1)
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Dy k.4 is a constant depending only on f, the (unknown) density, K, the
shape of the kernel, and d, the dimension of the space (see [1]).

We wish to prune the net from N kernels to n kernels, but maintaining the
structure of the estimator, that is, keeping the widths the same for every kernel,
and keeping a unity integral of the estimator (it is supposed to be a density).
This could be achieved if we were able to provide a new set of n independent
examples issued from f. One solution would be to calculate the inverse of the
repartition function associated with fn which is not an easy task. An other
would be to re-run a VQ with n centroids instead of N, either on the original
database —this would be computationally expensive— or on the previous result
—but would a VQ perform well on a small set of points.

We intend to use an other approach, derived from Optimal Brain Surgeon
(OBS) [3], which is a function approximation/optimization scheme.

2 OBS and the kernel density estimator

The idea is to use fy, the estimate of f with N kernels as a target, and then
move slightly the n selected centers in order to compensate for the loss of N —n
kernels. Thus we need to define an error and a way of varying the parameters
of the model that will lead to pruning.

2.1 The error

The error is defined as the square of the Ly norm, so as to allow formal calcula-
tions —instead of averaging on a database— but any additive measure will do.
Suppose we have a target function f and a parameterised model of f denoted
by fp (P is the parameter vector), we define

E(P) =511 f = Fr =5 [ (@) - Fr(e)?ds,

_ the Mean Integrated Squared Error (MISE, over the whole space 2) associated
with estimator fp, thus function of P. We wish to minimise this error by vary-
ing the parameters. This variation of P is constrained for some parameters p;
indicating that we wish to prune some kernels and keep the structure of the esti-
mator. Other parameters are free to evolve allowing a constrained minimisation

scheme. This is OBS.

2.2 Parameterisation

We now need to define a parameterised expression of our estimators that will
allow for pruning via parameter variation. We write

1 & z—C; 1 i z—CN
¢(Ci,h,P)=mZK( R Aoy > K(—-ﬁ;—-‘)
P i=1

N izn41
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where C;, h and p are variable parameters, respectively the new centers, the new
width and p is a ‘pruning’ parameter that is used to simulate the elimination
of N — n kernels (last term of ¢). They form together the parameter vector P.
The CN are the old centers from estimator fn and are constant for our purpose.
n, used to set the bounds of the summations, is the desired number of kernels
and is actually fixed by the user; it is not considered as a varying parameter.
Forcing h to take its optimal value h,,, the term 1/nh? in the first part of ¢ can
be written 1/D%* . h* through eq. (1). ¢ can finally be written:

#(Ci, h,p)=«a- C

Y+8-p a, # constants

Then, if we set the Cj’s to their old values C}¥, h to Ay and p to 1, we recover
fN (call Py the corresponding parameter vector). And if we set p to 0, and h
to h,, we have a n-kernel net (pruned net) that is obtained after a variation of
the parameters of ¢, i.e the centers C; of the remaining kernels (first term in ¢).

2.3 A constrained minimisation: OBS

As in OBS, we will resort to a Taylor expansion of the error. This is written
SE=VE . 6P+ %513’ “H-6P+o(|| 6P ||*),

where H is the Hessian matrix of E. This expansion is performed around the
minimum of E that is reached for fN, that is for P = Py. Derivatives and
second derivatives are then taken in Py, minimum of E. The gradient term of
the Taylor expansion is thus exactly zero.

We wish to minimise §E with respect to the parameters, thus causing a
variation § P of P. But we require that some pruning is achieved, and this is
written as a constraint over § P:

bp = 0-1
6h = h,—hy.

The first constraint indicates that we prune N — n kernels. We have chosen
the simplest way to write this, using a ‘cancelling’ parameter, but this may lead
to a non homogeneous parameter vector P. An other way to write this pruning
constraint would be to force the width parameter to zero in the pruned kernels.

In OBS, the selection of the parameters that should be pruned is achieved via
eq. (2), which would requires in our case a full evaluation of H for every center.
Moreover, we wish to prune several kernels (N —n) at the same time. We propose
to use a density criterion, because it seems natural that compensating for the
loss of a kernel in a region where there are many others will be easy (see fig. 2).

The second constraint states that we wish to use the ’optimal’ width on our
resulting estimator.

Usually, we have the centers, and we define an optimal width parameter.
Here, we are have the ‘optimal’ width factor for n kernels by eq. (1) and we
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define the centers. Actually, we have at hand the old value of h, hy, by the old
estimator fy. So we can estimate D ¢, which provides via eq. (1) an estimate for
h,.. This second constraint may also have a desirable side effect: it restricts the
space of solutions so that noisy solutions are eliminated. Furthermore, it forces
the width factor to be positive, which is essential for the model.

Vector 8P has the following structure:

6P = [6h,6p,86C1,...,6Cy)
Then, the matrix of constraints can be written

6Pt -e; — (ho—hn) | _ 0

6Pt €y — 1 -
where €1 and e; denote the canonical column vectors associated with the first and
second coordinates. This can be written M §P+ B with vector B = [Axy —hp, —1]
and matrix M = [e1, e3]*. Then, we form a Lagrangian, in the classical way, to
handle our constrained minimisation:

L(6P) = %513‘ H-§P+A-(MSP + B)

where A is the unknown Lagrange multiplier A = [A;, A;]. Differentiating L with
respect to 6P and using constraints, we find the constrained minimum and the
associated 8P

Min = %BtA‘lB (2)

§P' = —B'A"'MH™! (3)

where matrix A is a 2 X 2 matrix defined by A = MH-1M?

There is no proof that matrix A has an inverse nor than H itself has one.
This is a frequent problem when using second order methods. A way to ensure
the invertibility of H is to apply a regularisation technique by adding a small
perturbation €1, on H, and calculate the inverse of H + ¢I. This is a classical
way of going around the problem. As long as ¢ is small enough (we take 10~%), it
corresponds to a a good approximation of H in the space of invertible matrices.

3 Calculating the Hessian

It is worth noting that the Hessian has a particular form in our case. As we use
the MISE, the Hessian can be written

2
63 vp_ dyp 33/P] de

VVE = / [ _
N (T O eyt v

Here, yp is a shorthand for fp(z) and yp, stands for fx(z), the original net
output. As derivatives are taken in P = Py, it is straightforward that the first
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term vanishes. The Hessian is then exactly

/ Vyp - Vybdz .
Q

Depending on the choice of the kernel function, it may be possible to have
an exact expression of H. It is simple to get an analytic expression of the in-
tegrals when using quadric kernels. In the case of Gaussian or hyper-Gaussian
kernels, no proper expression can be derived as some integrals cannot be eval-
uated analytically. Of course, numerical methods could be used to calculate
those integrals. For example, a grid can be designed to evaluate the integral by
a discrete sum. Note that the number of points needed will become huge as the
dimension of the input space increases.

If the grid approach is used, a special inversion scheme can be derived as
matrix H is nothing but a sum of matrices of the form VyVy' (see [3] for the
method). This allows for an iterative calculation of H~! that needs only one
pass over the database. It is a classical recursive calculation of an inverse that
is often used in signal processing.

4 TIllustration

We illustrate the method on a toy problem in dimension 1. Note that as the
dimension increases, the number of required centers increases also in order to
guaranty the quality of the estimator. Then the Hessian rapidly becomes huge.
This may be the weak point of the method, as long as no fast/economical Hessian
inversion scheme is available.
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Figure 1: true density (dotted), original estimator (dashed), resulting pruned
estimator (solid), grid used to calculate the Hessian (first line of crosses), orig-
inal centers C}¥ (second line), pruned centers/kernels (third line) resulting —
moved— centers (last line).

We generate a (good) set of N = 30 points drawn from a normal 1-D dis-
tribution (d = 1, f = N(0,1)), and consider that they constitute the centers
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ClN of our kernel estimator of the normal distribution. We take Dy i 4 = 1.9, so
hy = 1.9-N~1/(4+4) = .98 for we know that the underlying density is Gaussian.
In a real situation, we should use the value of hy provided by the old estimator
fN, or a proper estimate of Dy k4.

We show on fig. 1 the results obtained after pruning 10 kernels (out of 30) and
using a grid of 10 equally spaced points to evaluate the error.The performance is
given in terms of relative MISE (p ={| fv — fu ||I> / || f~ ||?): (a) density driven
pruning p = 1.710~3 and (b) manual selection p = 0.1.
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Figure 2: Relative MISE p against density fy at
kernel center. p is obtained after pruning one ker-
10 . nel at a time on the previous example. Each cross
represents one pruned kernel.
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On fig. 2 we show that the density criterion we used makes sense, at least
for smooth and well behaved estimators. Clearly, pruned kernels centered at
low density locations degrade more the estimator. But a kernel located at the
highest density area will not necessarily be the best one to prune.

5 Conclusion

We presented a theoretical adaptation of Hassibi & Stork’s Optimal Brain Sur-
geon to the case of kernel density estimators.- Pruning is driven by a density
criterion, and the method aims at producing an ‘optimal’ estimator, provided
the previous one was optimal. Current work deals with a theoretically justified
stop /acceptance criterion for pruning. Comparison with direct VQ approach
will be carried out soon.

This work has been partly funded by ELENA Nerves 2 Esprit Basic Research
Project 6891.
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