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Abstract. In this paper, we investigate the dynamic behavior of a back-
propagation neural network while learning the XOR-boolean function. It
has been shown that.the backpropagation algorithm exhibits chaotic be-
havior and this implies an highly irregular and virtually unpredictable
evolution. We study the chaotic behavior as learning progresses. Our in-
vestigation indicates that chaos appears to diminish as the neural network
learns to produce the correct output. It is also observed that for certain
values of the learning rate parameter the network does not converge and
it appears as it may not arrive at producing the correct output.

1. Introduction

It has been observed that the delta-tule-bears a structural resemblance between
the Verhulst equation, known for its chaotic behavior. The delta rule for the
output node is

ApWis = Bltp; — Op;)Opi(1 — Opi)OM
and for the hidden nodes
ApWii = B> 85k Wij)Opi(1 — Opi)Opf
k=1

In both equations, the expression Op;(1 — Op;) is found which is also present
in the Verhulst equation which is as follows : z;41 = az,(1 — ;).

Given the similarities of the equations it would seem natural to observe sim-
tlar phenonema such as bifurcations and chaos as was found for the Verhulst
equation. Indeed the chaotic behavior has been observed in [VM90]. A bifur-
cation diagram for the backpropagation algorithm has been created using the
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sum of the absolute values of the weights for different learning rates. The pa-
rameter regime indicates that bifurcations occur for learning rates inferior to 2.3
and a window appears between $=2.9 and $=3.2. For learning rates superior
to 3.3, the weights grow exponentially. Futhermore, in [VM90] the presence of
chaos has been illustrated by means of a phase space diagram, a power spec-
trum and the calculation of Lyapunov exponents. It has also been emphasized
that for the full range of values the network succesfully learned. This implies
that even for values in the chaotic regime, a neural network can succesfully learn.

A number of other papers discuss chaotic and dynamic aspects of neural
networks other than backpropagation networks. In [AI90] a simple one neuron
neural network is analysed that has a number of properties of biological neurons,
such as the squid giant axons. The authors find a similar behavior of alternating
periodic and chaotic sequences of neuron responses. In [DM88], it is shown that
feed forward neural networks in general have a chaotic behavior because the dis-
tance between two arbitrarily close configurations always increases, which may
be interpreted as sensitivity to initial conditions. Similar results are discussed
in [SC88] where a continuous time dynamic model of a nonlinear network with
random assymetric couplings is studied. For these networks, phenomena such
as oscillations, bifurcations and chaos have been observed.

In this paper, we are mainly concerned by the role of chaos in the learning
process of backpropagation neural networks. The main contributions of the pa-
per can be summarized by the following : 1) as the learning the XOR-boolean
function progresses, the order of chaos in the backpropagation network appears
to diminish, 2) as the number of iterations used for learning increases, we find
convergence for a wider range of learning rates (8), 3) the backpropagation neu-
ral network converges faster for some -values of the learning rate § and there
are instances of @ for which the network appears not to converge within 500.000
iterations' and we do not know whether it will ever converge.

The paper is organized in function of the different calculations and visual-
izations made of the learning process. We first graphically expose the presence
of chaos and how it evolves as learning progresses by mean of the bifurcation
diagram and the corresponding phase spaces. We then compute on the basis of
these data the Fourier transform and the Kolmogorov Entropy.

2. Bifurcation Diagrams

In Figures 1 and 2, we show the bifurcation diagrams for the XOR-function
where the outputvalues of the network are plotted against different S-values for
a temperature equal to 0.6. The bifurcation diagrams, constructed at different
moments during the learning process, allow us to observe how the order of chaos

1We have chosen to restrict the maximuwm number of iterations during learning to 500.000.
This restriction was imposed by our computational capabilities.
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Iiterations/ﬁ”l|2|3[4I5|6|7|8}9I10|11I12|13|14|15‘

40K *

200K * *

400K * *

500k P R R * [ * | * ¥ | * |

Table 1: Evolution of convergence (*=convergence)

evolves over time. For different values of the learning rate 3, we allowed the
network to learn during a limited number of iterations, ranging from 40.000 to
500.000. For each run, we kept a record of the last 200 output values generated
by the network. These values are then plotted against the corresponding 3-value,
resulting in a bifurcation diagram.

From these diagrams, we can make the following observations. First, from
Figures 1 and 2, it is clear that we can distinguish between three possible states
in which the neural network can be for each value of 3 : 1) convergence of the
network resulting in correct output values equal to 1 and 0 (e.g. in Figure 1
: for $=8.2 to 8.4), 2) finite periodicity corresponding with a firite number of
values which do not correspond with the desired output(e.g. in Figure 1 : for
B < 8.2), 3) chaos having an unperiodic series of output values obviously not
corresponding with the desired output (e.g. in Figure 1 : for 8 > 10.5).

A second observation is that, as the number of iterations increases, the neu-
ral network converges for more f#-values. After 40.000 iterations, we only have
convergence for (-values around 8 and 10 whereas, after 400.000 iterations, con-
vergence is achieved for values between 8 and 12. We also observe that after
500.000 iterations, which is the maximum number of iterations allowed, there is
still no convergence for A’s around 1 and 7. We do not know whether, for these
values, the network will ever converge. This evolution is summarized in Table 1.

Thirdly, as the number of iterations for the learning process increases, the
order of chaos diminishes. When we observe Figures 1 and 2, we see that, even
in the chaotic zone, more values are correctly computed. We will see that this
observation is supported by the computation of the Kolmogorov entropy.

3. Phase Space

The phase space is a space in which each possible state of the system is repre-
sented unequivocally by a point in that space where each coordinate corresponds
with a state variable of the system. If a dynamic system has a strange attractor,
a phase space diagram will reveal its presence if the dimension of the attractor
is less than the projection dimension. Some kind of structure will appear when-
ever some kind of deterministic system is involved, which of course is the case for
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Figure 1: XOR Bifurcation diagram for temp=0.6 : 40.000 iterations.

Figure 2: XOR Bifurcation diagram for femp=0.6 : 400.000 iterations.

the backpropagation algorithm. However, this phase plan projection is nothing
but an indication of chaos and its topographical characteristics are difficult to
interpret.

In Figures 3 and 4, we show phase spaces for different values of 8. For =2,
which corresponds with the non chaotic zone, a relatively regular geometric ob-
ject emerges. For #=9, corresponding with the the chaotic parameter regime,
we find a much more irregular object. This is considered to be an indication of
chaos.

4. Fourier Power Spectrum

Chaotic systems are characterized by a broadband Fourier power spectrum in
which no particular frequency can be found. We therefore expect to see for
values Inside the chaotic zone a broadband spectrum. We computed this power
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Figure 3: Phase space for temp=0.6 and =2

72



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 69-74

lllllllllll‘

HH T

¥

Figure 4: Phase space for temp=0.6 and =12
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Figure 5: Power spectrum for temp=0.6 and a) §=2 and b) §=12

spectrum for S-values 2 and 12. As can be seen in Figure 5, in the periodic case
the five peaks refer to the period 4 (Figure 5 a)) and the continuous broadband
spectrum to chaos (Figure 5 b)).

5. Kolmogorov Entropy

We finally computed the Kolmogorov Entropy for the XOR-function using the
approximation proposed by Grassberger and Procaccia ([GP83]). The entropy
should be finite but non-zero in order to have a chaotic system. Not only did we
compute the entropy for three F-values (2, 9 and 12) for a temperature of 0.6,
but we also calculated the evolution of the entropy as the network learns. The
results are shown in Table 2 and clearly indicate that the process becomes less
chaotic. For $=12, there is initially a slight decrease in the entropy, but then
this stabilises, implying that not all of the chaotic behavior disappears. This
is a confirmation of what we visually could observe in the different bifurcation
diagrams (Figures 1 and 2).

6. Conclusion

In this paper, we have investigated the XOR and the backpropagation algorithm
as a non linear dynamic system having a number of interesting behavioral char-
acteristics. While in [VM90], the presence of chaos has been established, we
have additionnally shown the following : 1) for some values of the learning rate
B, the neural network requires much less time (in terms of number of iterations)
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| iterations [B=2]p=9]pB=12|

0-10K 0 0.08 0.09
10-20K 0 0.05 0.08
20-30K 0 0.03 0.08
30-40K 0 0.01 0.08
40-50K 0 0 0.08

Table 2: Evolution of Kolmogorov Entropy

to converge than for other values; 2) as the number of iterations increases, there
appears to be convergence for a larger range of B-values; 3) the order of chaos
appears to diminish as the number of iterations increases and the neural network
learns.

Although we have to be very careful in advancing major statements, there
appears to be some indication that during the learning process, the neural net-
work gets into a chaotic state but is still capable of learning and consequently
of getting out of this chaotic state. The next issue, which has not been adressed
in this paper, is : what are the implications of chaos for the use of neural nets
? Are we dealing with an innocent side-effect of learning or does it constitute a
fundamental property of it 7 In biology, there is evidence that chaotic attractors
are needed for learning [SF87] and therefore this may be an interesting line of
research to see whether this also holds for artificial neural networks.
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