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Abstract

The performance of radial basis function (RFF) networks is compared
to alternative learning algorithms in the domain of automatic EEG-data
classification. In spite of good recognition performance, RBF networks can
suffer from the presence of irrelevant features in the input vector. Here, a
search-based approach to the problem of automatic selection of inputs to
hidden-layer neurons is proposed.

1 Introduction

Radial-basis-function (RBF) networks have been widely accepted as a power-
ful means for function approximation and for automatic classification. They
build on the theorem proved in Cover (1965), stating that a complex pattern-
classification problem has a higher chance of becoming linearly separable if it
is non-linearly mapped to a space of higher dimensionality. This idea is imple-
mented by the network in Figure'1. The hidden-layer neurons carry out the
nonlinear mapping, and the weights of the output-layer neurons (with linear
transfer functions) define the separating hyperplane.

The theoretical and practical considerations of Powell (1988) show that the
type of the non-linearity in the hidden neurons is not crucial to the overall
performance. However, the following gaussian function is prevalent:

— 2

1
pi(3) = gz exp(- s
where x is the input vector, y; is the center of the j-th gaussian and oj is its
standard deviation. The activation (output value) of the i-th output neuron is
given by the function y; = F(x) = Z7.,w;;jp;(x), where w;; is the weight of
the link from the j-th hidden neuron to the i-th output neuron. The weights
wo; are connected to a bias with the fixed value of 1. The network is defined by
the output-layer weights, by the number and locations of the gaussian centers
u;, by the respective standard deviations oj, and by the dimensionality of input
vectors.
Park and Sandberg (1991) proved that a RBF network with enough hidden-
layer neurons can approximate any continuous function with arbitrary accuracy.
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Figure 1: Radial-basis function network

In classification tasks, each output neuron represents one class. If ¢ is the index
of the output neuron with the highest activation, then the input vector x is
assigned the i-th class.

In realistic implementations, the centers p; are often positioned at the co-
ordinates of properly selected input vectors, and this implies two important
questions: which of the input vectors are sufficiently representative to be chosen
as centers, and which of the features are relevant for the classifications? While
the former issue received considerable attention in the literature, the latter has
largely been neglected. For this reason, we supplemented an existing RBF learn-
ing algorithm with a simple technique capable of trimming those features that
are considered as having only insignificant impact. The motivation is to reduce
the computational time needed for classification tasks: The-price is increased
computational costs of learning and slightly degraded accuracy of the classifier.

We compare the performance of the program to a few other learners on
a difficult recognition problem from the domain of automatic classification of
EEG signals. The referential systems include the nearest-neighbour classifier,
LVQ (Kohonen, 1990), and the machine-learning programs C4.5 (Quinlan, 1993),
and CN2 (Clark and Niblett, 1989). Experiments indicate that RBF networks
compare very favourably to the other systems, the reasons for which are detailed
in the last section.

2 Selecting Representative Pieces of Data

We briefly revise the previous work and then describe our own contribution.

As for the positioning of the hidden neurons, we follow the recommendation
of Poggio and Girosi (1990), placing the gaussian centers at the coordinates
of the individual input vectors and understanding the task as an interpolation
problem. Interpolation, in its strict sense, is stated as follows: ‘Given a set of
input and output vectors, find a function F : R"® — RP such that for each input
vector x; = {Zi1,.--,%in} and the desired output vector ds = {di,...,dip} we
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have F'(x;) = d;.” By proper parameter setting, the network should reasonably
generalize to vectors that have not been used for the network definition.

Two aspects of the available training data can have detrimental effect on the
quality of the resulting network: improperly selected vectors to serve as gaussian
centers, and improperly chosen features.

If the input vectors are noisy, the strict interpolation will overfit them. Hence,
a few techniques for the selection of a proper subset of input vectors defining
the network have been suggested.- Lowe (1989) uses a random subset but this
works only in simple tasks; Cheng and Lin (1994) apply a search technique with
operators ‘add a neuron’ and ‘delete a neuron’; and Chen, Cowan, and Grant
(1991) apply only the single operator ‘add a neuron’ and use the orthogonal least
square criterion to select the next candidate!.

The problem of the feature selection has been attacked by Sanger (1991),
where a tree-like structure of RBF-neurons (in multiple hidden layers) has been
suggested. However, this approach seems to produce too large trees as the num-
ber of features grows. As an alternative, we implemented a system that applies
hill-climbing search to reduce the number of inputs. As a basis of the algorithm,
we used the orthogonal least square learning of Chen, Cowan, and Grant (1991)
to generate, one by one, the hidden neurons. However, we supplemented it with
a module to cut off those features that are considered as irrelevant.

This is accomplished by a hill-climbing mechanism that, at each step, searches
for the features whose deletion maximally reduces the mean square error (MSE)
on the training data. The process terminates when the next single trimming

‘would increase MSE.

Algorithm.

1. Select the input vector by the orthogonal least square method and use it

to create a new hidden neuron;
2. Apply the hill-climbing algorithm to trim input features off this neuron,

one by one, as long as the mean square error does not increase;
3. Use the pseudomatrix approach to determine the output-layer weights min-

imizing the mean square error;
4. If the termination criterion is satisfied, stop; otherwise goto 1.

The methodology of pseudoinverse matrices as described in Duda and Hart
(1973) was used to set the output-layer weights; proper values of o; as well as
the number of hidden neurons were determined empirically.

3 Case Study

We applied the above algorithm for the classification of EEG signals. Input
vectors involve 44 features, representing estimated signal powers at 11 electrodes
at 4 time slices. The signals are pre-classified into four different classes. The

1An alternative method for adding one neuron at a time with subsequent tuning of the
centers was presented by Fritzke (1994).
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Figure 2: The problem of overfitting in the EEG domain

learner’s task is to use a subset of the vectors (¢raining vectors) and develop from
them internal knowledge that will facilitate the classification of the remaining
(testing) vectors. The neurophysiological interpretation of the results is, for the
needs of this paper, irrelevant. Three data sets were used, referred to as A4M4,
B6M2, and B8M2. The sizes of the sets are 318, 226, and 177 vectors. All classes
were roughly equally represented.

For several reasons, the task just outlined represents a very difficult learning
problem. First, the input vectors contain many features whose relevance for the
classification is insignificant but no apiori information about feature relevance
exists; moreover, the available features do not suffice for reliable classifications.
Second, the decision surface has a very complicated shape because of the many
hidden interrelations of the individual features. Third, the input vectors are
noisy. Fourth, the number of training vectors is small considering the dimen-
sionality of the problem. Fifth, it is a well-known phenomenon of EEG signals
that their quality crucially depends on external factors and, hence, the measure-
ments are, to a certain degree, inconsistent. . =

First of all, we had to determine the number of gaussians p; and the standard
deviations ;. To this end, we carried out a single run on one of the data sets. A
subset of 60% vectors has been used for training, the rest being used for testing.
The results are depicted in Figure 2. Note that the accuracy measured on the
training vectors increases with the growing number of hidden neurons. However,
the accuracy on the testing data will decrease after reaching the maximum by
about 15-25 hidden neurons. Following this experience, we set the number of
hidden neurons in all subsequent experiments to 20. Standard deviations of
the gaussians have been determied similarly. No feature trimming was applied
during these preliminary experiments.

Table 1 summarises the performances of various systems on the three data
sets. The results represent averages over 20 runs on different splittings of the
data into training and testing sets. In each run, 60% of the vectors were used
for learning and the remaining 40% of the vectors were used for testing. Column
1-NN shows the performance of the nearest neighbour classifier. CN2 is a public-
domain machine-learning program distributed by P. Clark and T. Niblett. The
decision-tree growing program C4.5 has been implemented by J.R. Quinlan and
is distributed by Morgan Kaufmann. The results of LVQ were obtained using
the package LVQPack. RBF is represented by two columns: RBF, which is
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Table 1: Performance of various learners on three data sets

[ [ 1NN [ LVQ | CN2 | C45 | RBF | RBFt

A4M4 || 50.2 | 49.1 | 441 | 554 | 61.1 | 57.8
B6M2 || 42.1 | 41.8 | 37.2 | 50.1 | 54.9 | 53.0
B8M2 || 41.5 | 36.9 | 38.6 | 45.6 | 47.1 | 45.6

a reimplementation of the algorithm of Chen, Cowan, and Grant (1991), and
RBFt, which is the same algorithm supplemented with component trimming.

The experiments have shown that the RBFt algorithm was capable of re-
ducing the number of inputs into each hidden neurons by circa 60% on average,
with only a slight reduction in performance.

4 Discussion

Explanation of the extent to which RBF outperforms well-established learning
systems on the EEG data can be found in the peculariates of the domain as
explained in the previous section. Thus, for instance, C4.5 creates decision
surfaces that are piecewise linear and ‘piecewise axis-parallel’. Further on, the
system builds on the assumption that the features are pairwise independent,
which is not the case of our data. The performance of C4.5 is reduced when the
output class depends not only on the absolute values of the components but,
rather, on their mutual relations. Similar considerations hold also for CN2.

LVQ, in turn, is able to discover linear interdependecies because it generates
piecewise-linear decision surfaces. Even though this algorithm is known as a
powerful classifier, its performance degrades if the training vectors are sparse
and thus do not permit reasonable positioning of the code vectors. This was
the case of our application, where the number of learning examples was small
considering the dimensionality of the problem space and the number of classes.

Nearest-neigbour classifiers are known to suffer from the presence of noise.
Also, sufficient number of vectors are necessary for good recognition.

Even though trimming irrelevant features somewhat worsened the results of
RBF, the system stills outperform all other learners.

To summarize, we were interested in the performance of various systems from
machine learning, pattern recognition, and neural networks on the difficult task
of EEG classification. It turns out that RBF networks are powerful classifiers
but are not able to prune out irrelevant features unlike, say, decision-tree growing
algorithms. For this reason, we suggested a simple algorithm capable of trimming
unnecesary features from the RBF inputs.
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