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Abstract: In this paper, we propose a commented state-of-the-art
of pruning methods. In fact, most of the methods can be interpreted
according a statistical point of view, which is very useful for cleaner
application: choice of parameters, pruning stopping criterion.

1 Introduction

In the context of evolutive neural networks, not only incrementality, but also
decrementality can be considered. As a matter of fact, decreasing the size of
a network leads to simpler models. Additionally, constraining a model to be
‘simple’ in some sense is a way to avoid the overfitting phenomenon, which is
often a cause for bad generalisation. While constructive methods try to build
up a minimal model by adding successive parameters (or units), the pruning
approach starts off with an already built model, and tries to extract its essence
by pruning useless parameters. This paper is a commented but non exhaustive
state of the art of the field (see also [21]), essentially concerning Multi-Layer
Perceptron (MLP) trained with any Least Squares (LS) method, for instance
with Back-Propagation (BP). We distinguish two classes of pruning methods:
during-learning pruning (Section 2), post-learning pruning (Section 3).

The first class of methods makes use of a special learning scheme that aims
at reducing the complexity of the network as the learning process is carried
out. The usefulness of parameters is determined as the network learns, and
therefore dependently on that process. These methods are mainly weight pruning
methods, as the learning occurs on weights.

The second class of methods uses a more modular approach and aims at
removing useless parameters after the learning phase has reached some conver-
gence. Pruning is carried out independently, on the resulting net, generally
assuming that convergence is reached to simplify the matter.

2 During-learning pruning

2.1 Principles

These methods were introduced in the Neural Network literature in the context
of Back-Propagation, and are known as ‘Weight Decay’ [16] [8] or ‘Weight Elim-
ination’ [23]. The idea is to balance the goodness of fit (precision) with some
other cost term (complexity):

O(w) = E(w) + AC(w). 1)
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O(w) is the objective function that is to be minimized, with respect to w,
the vector of parameters. E(w) is the fitting error term, usually taken to be
the Mean Squared Error (MSE) over the learning base. C(w) is the so called
‘complexity term’. A is used to fix the trade-off between complexity and goodness
of fit. Usually, an increase in complexity of a model (number of parameters for
example) will allow for a lower error to be reached, but at higher cost, and will
probably lead to overfitting. Thus the terms E(w) and C(w) are antagonist in
the minimisation process.

This ‘complexity term’ can also be seen as a way to embed a priori knowledge
in the learning scheme, as the notion of ‘complexity’ will take different forms
depending on the properties we wish to give to the model.

{ Function O(w) | Name [ Ref |
wa Weight Decay [16]
i
Z Jwg] Weight Decay 8]
i —,
f . .. i
1+ w? Weight Elimination | [23]

Table 1: Complexity terms used in BP learning.

Table 1 is a summary of complexity terms that have been proposed in the
literature. In the table, w; denotes the i*" weight of the weight vector. The three
terms will find direct explanation in. the theoretical justification given later on.

Regardless of the diversity of functions C(w), A is a parameter that is dif-
ficult to tune. Mackay [19] gave some guidelines about that issue, and many
practitioners tune it by hand. This parameter is in fact the weak point of these
methods, as an incorrect (too large) value will convey disastrous consequences.
It seems that setting A to zero at the beginning of learning and then progressively
increasing it as the network learns is the best rule of thumb. We implemented
and evaluated these methods [10], with weight decay and weight elimination
terms on a simple function approximation task. Our results corroborate what
Crespo [8] and others concluded on weight decay methods used directly, with
A tuned by hand: the balance parameter is hard to tune. At least, BP is very
sensitive to that parameter. Moreover, the use of weight decay terms somewhat
slows down BP convergence (in number of iterations).

Finally, the two main practical questions are: How to chose the complexity
term ? How to tune the parameter A 7 In the following, we answer to the first,
one using statistical interpretation proposed by [24].

2.2 Theoretical justification

From a statistical point of view, the weight vector w is an estimation of the
parameter vector, based on the data of the learning base. Then, it can be
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associated with a density, say p(w/ya) if we call y4 the desired output (data of
the learning base). From Bayes rule, we can write

p(yd/w)p(w)
p(ya) @)

Then, an optimal choice for w can be defined by maximising p(w/y4) with
respect to w (Maximum A Posteriori equation). This is equivalent to maximize

In[p(ya/w)] + ln[p(w)]. 3)

If we have no prior information concerning w (i.e setting p(w) = constant),
maximization of (3) leads to Maximum Likelihood estimation. Moreover, sup-
posing observations are corrupted by an additive zero-mean Gaussian noise with
variance o2

p(w/ya) =

va(e) =dh =9 +n'.
Then, if n’ are independent, the density is

plva/w) = K [Jexa(- &80,

And it leads to the well known result that maximize (3) is equivalent (in the
Gaussian case) to minimize the Mean Square Error:

W) = 505 30 — )", @)

But if we do have prior information on-weights,or if we decide to constrain
the weights to give them a known property, we can set p(w) to a function of
w rather than to a constant. Gaussian or Laplacian distributions are possible
choices that lead to classical weight decay terms:

If weight are zero-mean identically distributed Gaussian variables: N(0,032),
then (assuming each weight is independent of each other) the density of the

2
weight vector is: p(w) = K - | | exp -2y with K constant. Maximization of
: 202
4

p(w) leads to the minimisation of C(w) = % E w?.
w

If weight are Laplacian random variables L(0, pt,), then (assuming each
weight is independent of each other) the density of the weight vector is: p(w) =

K- H exp(—%”‘—l) with K constant. By similar way, it leads to the minimization
N W
]

1
of C(w) = ™ z [ws).
W
Similarly, last exemple of Table 1 can be derived from a Cauchy distribution
[24].
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All these particular distributions assume that weights are independent—this
is why the p(w) can be written as a product. This is a strongly limiting hypoth-
esis, because as the learning process goes on, weights are certainly less and less
independent.

The constant terms that appear in front of the sums can be included in
the final A of eq. (1). As they correspond to unknown noise level and unknown
weight distribution parameter, they can be eliminated using a classical ignorance
prior for scale parameters.

This Bayesian interpretation of weight decay methods provided by Williams
gives theoretical justification for these methods. The author also justifies the use
of a Laplacian prior [24] following Jayne’s principles, and gives an alternative
to Mackay’s way [19] to calculate the balance parameter A, also justified by
theoretical principles.

2.3 Pruning with robust backpropagation

All the previously described methods make use of an additional term in the
objective function, and thus constrain the net to ‘prune’ itself useless parameters.

In a context of fault tolerance, Kerlirzin et al. show [17] that, against all odds,
MLP trained with BP are not robust models as regards pruning: random pruning
of weights (or units) can imply disastrous results. Therefore, they proposed an
alternate algorithm for training robust MLP, the so called ‘BP with mortality’
algorithm.

It is essentially a double stochastic BP, carried out on a probabilised error
function. Usually, the error to be minimised is the MSE E(w) taken on the
learning base. If we consider that some weights can be eliminated (intentionally
or not), this means that only any subset K of the weights is relevant. Let us
consider the probability of subset K to occur, say P(K), a probabilised version
of the error can be derived:

Ep(w)=)_ E(w; € K) - P(K).
K

The new stochastic aspect is that configurations (K) are also taken at ran-
dom, in much the same way patterns are. Sure, that makes the training slower,
but this special learning scheme has the desirable effect of sharing the encoded
information on weights in a more uniform way than BP does.

Experimental results [17] are very convincing. This gives a simple strategy to
prune a MLP: as weights are trained in a very specific way, they can be removed
at random without much loss of performance.

3 Post-Learning Pruning

The previously presented methods act as the learning process goes on, possibly
performing global optimisation, but at higher expense. Other techniques, some-
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times called ‘sensitivity based methods’ act on a previously trained net, and
perform pruning as a post-processing.

3.1 Optimal Brain Damage and Optimal Brain Surgeon

Optimal Brain Damage (OBD) is one of the first pruning method proposed by
Le Cun et al. in 1990 [18]. Optimal Brain Surgeon (OBS), which is a reffinement
of OBD proposed by Hassibi in [15], allows for a one shot update of the weights
after pruning, and avoids re-training,.

The methods are based on a Taylor expansion of the error E(w) around the
minimum reached after training. The idea is that deleting a parameter w; is
understood as bringing it to zero, thus causing a variation éw; = (0 — w;) of
the parameter vector w. Using a Taylor expansion of E around w relates the
variation of the error to the variation of the parameters:

i
B= 3 gt +z Gl + 2 gumbuibu;+0(low IF). (5)

i /i#i

In OBD, making the hypothesis that (i) E is almost quadratic (order 2 de-
velopment is enough), (ii) the Hessian is diagonal (cross terms vanish), (iii) the
network is at a local minimum (first term vanishes), Le Cun et al. derive the
simplified expression of saliency of weight w;:

’E
8 = w] g z (6)
This means that deleting parameter w; (settmg it to 0) causes an increase of
E of s;. Then, the w;’s associated with the smallest s;’s are pruned. Retraining
is necessary to compensate for the deletion of a parameter.
In OBS, Hassibi formalises the problem as a constrained optimisation. In
fact, one wishes to minimise the increase in E given the fact that we delete
parameter w;. This constraint can be written

éw-e;+w; =0,

where ¢; is the canonical vector selecting the i*® coordinate of w. Then, using
the matrix expression of (5), a Lagrangian can be written and minimised

L(6w) = %6w‘ -H 6w+ X- (6w -e; +w;).

Differentiating with respect to éw gives the constrained minimum and cor-
responding variation of w

uf
L = BT’ M
6w‘ = —TI—;:ZI-]-‘:H-IC;'. (8)
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Equation (7) is the generalisation of (6) to the case of a full Hessian. Eq.
(8) allows for a one shot update of the weight vector w, automatically setting
w; to zero (constraint) and slightly changing the other parameters, without re-
training. :

In the two methods, there is no stopping criterion for pruning: How to chose
the threshold (on s; or L;) which drives the pruning ? A justified stop criterion
will be paliated with the method explained in the next section.

3.2 Statistical Stepwise Method

This method was proposed by M. Cottrell et al. in [7]. Though it is founded on
a statistical point of view, the pruning criterion is very close to OBD and OBS,
mainly because the underlying mathematical tools are similar [11].

The Statistical Stepwise Method (SSM) consists in pruning the weights that
are statistically non significant, but only if the resulting net is “better” than the
previous one. The notion of quality for a network (model) is defined as Akaike’s
B Information Criterion (BIC) [1].

The key is to consider that the vector of estimated parameters obtained after
a LS optimization is a vector of random variables, W, known as the LS estimator
of the theoretical solution w*. As a matter of fact, even in the case of non linear
LS estimator [2], W is known to be asymptotically Gaussian:

VT(W - w*)Ti N(0,02571) 9)
—00

where T is the size of the learning base, 02 is the residual variance of the
model (MSE) and I the Hessian of the error E with respect to the parameters
at w*.

Now, we can test (statistically) the nullity-of each component of W, using a
standard Gaussian test, carried out on the mean of the estimator (w* from (9))
in order to decide whether if w; is null or not. The criterion is thus the quantity
defined for the test rule: ’

~

where o2 is estimated by &2, and the variance of u; is then estimated by &2
multiplied by the i*h diagonal term of the inverse of the Hessian taken in w.

For a fixed significance level of 5%, w; is considered non significant as soon
as t; < 1.96. It is actually pruned only if the BIC of the pruned net, after
retraining, is smaller than the BIC of the current net. If not, pruning is stopped.
We recall that the Akaike’s B Information Criterion is:

=

2
BIC = log(75) + n,l"g—q(,ﬂ-

where np, is the number of parameters of the network.
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3.3 Comparison

It is simple to see from eq. (7) and (10) that the selection criterion are identical.
More precisely, &(1;) is proportional to the square root of the diagonal term of
the inverse of the Hessian. Thus, L; as well as s; (with the approximation of
diagonal Hessian) are just the square of ¢;, and as we seek minima, the three
criteria will select the same weights.

SSM provides a theoretically justified threshold for the selection/pruning
phase where OBD and OBS do n’t. On the other hand, OBS provides a one
shot update of the parameter vector, that could be used with profit in SSM.
Finally, the idea of post-pruning verification using the BIC criterion could be
applied to any pruning procedure.

4 Direct Pruning

In previous sections, we presented methods that perform pruning on weights in a
rather indirect way. Other methods take a more direct approach and attempt to
remove units directly. This has the potential interest of speeding up the pruning
and provides simple interpretation.

4.1 Inside the MLP

Siestmas & Dow proposed a strategy for pruning a MLP [22] that has been
properly formulated and automated by Chung & Lee [5]. The principle of their
method is to consider a MLP as a succession of layers that project the set of
incoming patterns onto a set of output patterns (for each layer). The first set of
input patterns is the learning base, that is projected onto a first (internal) output
set, that will in turn be the input set to the next layer. From this point of view,
a simple study of the input/output relations at a layer level gives an obvious
strategy to remove useless units: (i) a unit having stable output for every input
pattern can be discarded, (ii) if two units have identical or inverted outputs
on the input set, one can be discarded, (iii) if the number of different patterns
remains the same between input and output, the full layer can be discarded, (iv)
units that are not ‘essential’ for the generation of the output patterns can be
discarded.

This last point is not properly formalised in [22] but implies a notion of
orthogonality to express the ‘independence’ of units. This stage of pruning
requires a little more efforts to be automated. The two first points correspond
directly to classes (i), (i) and (iii) in [5]. The last one is related to class (iv).

We will not develop further the explanations and formalisation given by
Chung & Lee, for the philosophy has been given yet. The algorithm they give is
a direct translation of their results, and requires a pass over the total internal set
of patterns, for each layer. Moreover, retraining is performed (possibly locally)
between each pruning, which is not very clever, as direct modifications could
easily be applied on the remaining weights. It is thus very greedy as regards
computing time and memory.
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4.2 Local LS

Pelillo & Fanelli [20] proposed a different approach to that problem, though
keeping the same line of thought: they wish to suppress one single unit in a
layer, and update the remaining units of the layer in order to keep the ‘internal
inputs’ to the next layer identical. Again, a pass over the complete learning base
(N patterns) will be required to build the corresponding internal input/output
set.

We wish to suppress unit ug;, the k*® unit in layer I, and keep the out-
put unchanged by a proper update é;; of the output weights w;;; on this layer
(thresholds are included in the notation as usual). We then write the equations
(Vi,j and pattern p)

Z wisiyii(p) = 3 _(wiji + 6i5)w51(p),

itk
where y;i(p) is the output of unit u;; on pattern p. This is equivalent to

> 8 uii(p) = winyni(p),
i#k
where 7 spans all the units in layer { + 1.

The authors propose to solve this system ! Az = b to the unknown vector z =
[6;5] using an iterative procedure (called pre-conditionned conjugate gradient)
that consists in minimising the remainders r, =|| Az, — b || and requires the
definition of a initial point, usually chosen null (zo = 0). The method stops
as soon as || £, — Zn41 ||< € fixed. “The problem is (see footnote 1): Which
unit shall we prune ? As we minimise remainders, starting from a minimum
remainder ro sounds reasonable, and leads to chose the unit associated to vector
b of minimum norm, as ro = b for zop = 0. This criterion is obviously ad
hoc and possibly under-optimal, but works well in practice, according to the
authors. Moreover, they argue that Siestmas & Dow proposals correspond to a
very particular conditioning of the system.

5 Other Methods

Different methods related to the Neural Network field have also been proposed
to perform pruning. We will shortly describe their field and make breif commen-
taries.

5.1 Trees

For classification tasks, not only MLP or Bayes classifiers are efficient. Indeed,
classification trees have been proposed earlier in the field of Artificial Intelligence
or Computer Science. Recently, a correspondence was made between Trees and

1this system depends on the pruned unit —that is not determined yet—, thus on k, I.

136



ESANN'1995 proceedings - European Symposium on Artificial Neural Networks
Brussels (Belgium), 19-20-21 April 1995, D-Facto public., ISBN 2-9600049-3-0, pp. 129-140

Neural Networks [3]. As a matter of fact, mapping a tree onto a Neural Net is
easy. And as there exist some well established optimal pruning procedures on
trees [4], the Neural Network community could benefit from them.

Some approaches: propose hybrid learning [9]. Some directly implant tree
procedures in a neural fashion. But in the end, the tree structure is essential
to the algorithm. The pruning phase relies on a previously built tree classifier,
and gently degrades it. So no proper generalisation can be drawn for other type
of classifiers. There is often a need to refer to the tree structure when pruning.
This structure is lost when mapping a tree onto a Neural Net. This is why we
do not develop this field any further, as it seems to be a closed one.

5.2 Genetic Algorithms

Some authors have proposed to use Genetic Algorithms for pruning —and more
generally for designing a Neural Network architecture. We will only cite [13].
This field does not seem to be mature enough to provide efficient tools. Moreover,
it often needs a great computational capacity.

5.3 Pruning density estimators

The kernel estimation of density [14] consists in putting a kernel centered at every
data point and of tuning the width factor in some optimal way so as to obtain the
best estimator. Such estimator is used in Bayesian Neural Classification schemes
[6]. As this may become computationally prohibiting with large databases, some
pre-processing such as vector quantisation (VQ) is usually performed in order
to strongly reduce the size ~thus the complexity— of the model. From now on,
points or centers will refer to centroids that represent each cluster.

If the number of centroids after vector quantization is too large, usually it is
necessarry to apply again another vector quantization from the complete data
base, which is computationally heavy. An alternative idea would be to prune
n << N centroids, from a given kernel estimator based on N points. We derived
such a method [12] in the case of fixed kernel estimator (each kernel has the same
width). After pruning, we constrain the width factor to the theoretical value
and, considering the density before pruning as a target, we move the remaining
centroids in order to compensate for the deletion of some kernels.

We define a parameterised expression of the density estimator that will allow
for pruning via parameter variation:

#(Ci, h _z":_l_K(z—_C';)+ f: 1 K(z—C,-N)
Q:;;Q“m mhd "\ h TP Ly NRET' ha

where C;, h and p are variable parameters, respectively the new centers, the
new width and p is a ‘pruning’ parameter that is used to simulate the elimination
of N — n kernels (last term of ¢). They form together the parameter vector P.
Notice that n is the desired number of kernels, and is linked to h, thus ¢ is a
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function of h. The C}¥ are the old centers from estimator fN; if N denotes the
total number of patterns, the CV are just the patterns themselves.

Then, if we set the C;’s to their old values C}¥, h to Ay and p to 1, we recover
the estimated density fy (call Py the corresponding parameter vector). If we
set p to 0, and A to h,, we have a n-kernel net (pruned net) that is obtained
after a variation of the parameters of ¢, i.e. the centers C; of the remaining
kernels (first term in ¢).

We now apply a constrained minimisation scheme inspired by OBS, in which
we wish to minimize the error variation § E with constrain on two parameters of
P:

ép=0—1 and 6h=h,—-hy.

The first constraint indicates that we prune N — n kernels. The second one
indicates that we wish to use the ’optimal’ width on our resulting estimator.
Then, we minimize the Lagrangian:

L(6P) = %m .H-§P+A-(MSP + B)

where A is the unknown Lagrange multiplier A = [A1, 3], H is the Hessian
matrix, B is the vector [hx — h,, —1], and M is the matrix M = [e1, e2]*, where
e; and e; denote the canonical vectors associated with the first and second coor-
dinates. Differentiating and using constraints, we find the constrained minimum
and the associated 6 P:

Min = %B‘A‘IB (11)
§P' = —-B'A"'MH™! (12)
where matrix A is a 2 X 2 matrix defined by A = MH-1 M.

More details and experimental results are proposed in [12]. The method is
efficient to prune a small number of kernels and works well in situations for which
vector quantization does not. Thus, it can avoid another vector quantization
procedure from the complete data base.

6 Conclusion

In this paper, we point out some relations between statistical methods and prun-
ing.

In the during-learning pruning methods (like weight decay or weight elimi-
nation), the complexity term can be optimally chosen if the weight distribution
is known and if weights are independent, which are very strong assumptions and
explain practical difficulties of the methods.

Post-learning pruning methods (OBD and OBS) are based on cancellation
of weights having small enough saliency. Surprisingly, such methods can be
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interpreted as cancelling the weight ”statistically equal to zero” (while it is
often claimed that small weights can be influent), and a simple hypothesis test
provides consistent threshold of the saliency and pruning stopping criterion.

Direct methods, based on cancellation of internal units which can be easily
compensated, have also been explored. Although most of the above methods
have been used for MLP,but pruning may also be succesfully used with kernel
estimators (Radial Basis functions).

Pruning methods are basic approaches to simplify networks and avoid over-
parametrization, and even overfitting (although it is difficult to prove). For that
reason, we recommend to apply pruning under control of a criterion like Akaike’s
Information Criterion (AIC or BIC), as done in [7]. From a practical point of
view, notice that pruning methods need heavy computations, typically involving
Hessian computation, or average on the whole data base, etc.
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