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Abstract. Relaxation labeling processes are a family of parallel distributed
processing models widely popular in computer vision. One of the most
remarkable features of these models is that certain local convergence results
are known to hold under unrestricted circumstances. In this paper we take
advantage of these properties to develop a novel kind of (multivalued)
associative memory that employs asymmetric connections. Experiments are

presented which confirm the validity of the proposed approach.

1. Introduction

Since the influential work of Hopfield [1], there has been an explosion of
interest in the study of neural network models of associative memory.
However, despite the manifested inspiration from neuroscience, it is generally
agreed that the Hopfield model turns out to be unsatisfactory from a biological
standpoint, especially because of the (essential) requirement that neurons be
connected in a symmetrical fashion.

In the computer vision domain, another class of parallel distributed models
has long been successfully employed in numerous applications [2]. These
algorithms, known as relazation labeling processes, were developed to solve
certain problems arising in the 3D interpretation of ambiguous line drawings
[3], and many authors have recently stressed that intriguing similarities exist
between them and both artificial and biological neural systems [4], [5]. This
claim is further supported by recent work showing that relaxation labeling
processes not only possess interesting learning abilities [6], but are also capable
of solving hard optimization problems [7]. The most notable feature of
relaxation labeling, which makes it especially related with the Hopfield neural
model, is that when symmetric connections are used there exists an energy
function that is minimized as the process evolves [8]. Interestingly, the same
kind of dynamical behavior is also exhibited by the original relaxation scheme
which was developed in a heuristic fashion [9]. However, some intriguing
differences exist as well. In particular, a general local convergence result has
been proven to hold even when the symmetry condition is relaxed [8], [10].

Based on such properties of relaxation labeling processes, in this paper a
novel kind of associative memory model is developed. The problem of loading
patterns in the proposed memory turns out to be equivalent to imposing a
certain consistency condition and this, in turn, amounts to solving a (sparse)
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system of linear inequalities. One of the most interesting features of the
relaxation labeling memory is that no constraint is imposed on the structure of
the connection matrix and, in fact, the algorithm does work with asymmetric
connections. Moreover, owing to the particular representation of memory
vectors employed, thie approach is completely general and allows us to develop
multivalued memories in a very natural way. Some experimental results are
reported which demonstrate the validity of the proposed model.

2. Relaxation Labeling Processes and Their Properties

Relaxation labeling processes were developed to solve the so-called
(continuous) labeling problem, where one has to assign labels to objects so as
to satisfy a set of domain-specific constraints. Let B = {b;,---,bn} and
A ={0,--,m—1} denote respectively the set of objects and the set of labels
for the problem at hand. Moreover, let the constraints be expressed in terms of
a four-dimensional matrix of real-valued compatibility coefficients R: the
element r, (A, ,u) measures the strength of compatibility between the two
hypotheses “A is on object b,” and “u is on object b;” High values mean
compatibility while low values mean incompatibility.

Let p () represent the degree of confidence of the hypothesis “label A is on
object b;.” It is assumed that p,(A) >0 and E,\p {(A) =1, so that the vector
P, = =(p (0), P (m 1)) can be considered as the probability distribution of
labels for b;. By putting together the p ’s we obtain a weighted labeling
assignment for the objects of B that will be denoted by P, and will be
conveniently considered as an n x m matrix. We find it useful to introduce the
space of weighted labeling assignments:

K={5€an:p’.(/\)20, all i,A and Y _p,() =1, alli}
A

which is a linear convex set of R"™™. Every vertex of K represents an
unambiguous labeling  assignment which asmgns exactly one label to each
object. The set of these labelings is denoted by K* = {7 €K : p. (z\) =0or1}.

Hummel and Zucker [8] developed a general theory of consxstency for the
labeling problem which is the basis of the work reported here. The entire
development of the theory is a generalization of the notion of consistency for
unambiguous labelings, which is more easily understood. Consider a labeling
7 € K. The degree of agreement between the hypothesis that b; is labeled with
A and the context can be quantified by a linear support function

057 = 32 D rij(hpy(k)  alli). )
J

Now, let 7€ K" be an unambiguous labeling, and let A(i) denote the label
assigned to b; by P (i.e. p,(A()) =1). It seems reasonable to say that P is
consistent if and only if the assigned label of each object receives the greatest
support at that object. This corresponds to having
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7;(XP) <q,(Ai)P), alliA (2

or equivalently Yyv,(A)g,(3;P) < EXpi(A)qi(A;ﬁ), for all € K*. By analogy, a
labeling 7 is said to be consistent provided that

;v.-(f\)qi(/\;ﬁ) < ;pi(f\)qi(/\; p), alli 3)

for all ¥ € K. Furthermore, if the inequalities in (3) are strict, for all ¥ # p,
then 7 is said to be sitrictly consistent. It can be easily shown that for
unambiguous labelings the conditions (2) and (3) are equivalent. After defining
the notion of consistency, Hummel and Zucker [8] showed that when the
compatibility matrix R happens to be symmetric, then a sufficient condition
for a labeling P to be consistent is that it is a local minimum of the following
“energy” function, which is a measure of labeling’s (in)consistency

L3 A
A relaxation labeling process takes as input an initial labeling p(o) €K and
iteratively adjusts it taking into account the compatibility model. The most
popular relaxation scheme, which was used in the experiments reported here, is

p,(t+ () = p,B(X)g,((X) / Y o p, (g O(p)  all i, (5)
m

provided that the compatibilities are nonnegative. This corresponds to the
original nonlinear formulas developed heuristically by Rosenfeld et al. [3].

Recently, it has been shown that, despite its completely heuristic
derivation, the original relaxation scheme (5) possesses in fact a number of
interesting properties. First, when R is symmetric then A turns out to be a
Liapunov function for the process which means that it is monotonically
decreasing along nonconstant trajectories [9]. Second, and even more
interestingly, it can be proven that strictly consistent labelings act as local
attractors for the process defined in (5) whether or not the matrix R happens
to be symmetric [10, Theorem 10]. These properties are the basis for the
‘associative memory model developed in this paper.

3. The Memory Model

In this section it is shown how to build up an associative memory that is
based upon relaxation labeling processes. In our discussion it will be assumed
that an m-ary (m > 2) memory is to be constructed. Let the patterns to be
stored have the form £ =¢ £, -+, where { € {0,--y;m—1} for all i =1...n.
Note that there exists a one-to-one correspondence between £ and the following
unambiguous labeling p(¢) € K* ¢ R"™

p, (€)= { g:‘\#g all i) .
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Based on this representation, the proposed associative memory model consists
of an n xm densely interconnected relaxation labeling network, the connection
strengths between units being determined by the compatibility matrix R. The
unit indexed (i,)) updates its state according to formulas (1) and (5), and its
activation value p. (A) can therefore be thought of as the “probability” that A
be the correct value for word’s site i. The network is started with an initial
configuration p( )e K, and evolves until a stable state is reached. From the
preceding section we know that if "p‘(o) is sufficiently close to a strictly
consistent labeling (which must be an unambiguous one) then the network will
eventually approach it, whatever the structure of the connection matrix R is.
If the resulting unambiguous labeling corresponds to a memory pattern, we
say that the network has recalled that pattern. This suggests that, to store a
vector ¢ in the network, we need to find a compatibility matrix R that makes
the corresponding labeling B() strictly consistent (we shall find it helpful to
“linearize” the matrix R and consider it as an n?m2-dimensional vector 7).

To make the discussion more formal, suppose that P memory vectors
f(l) 6( ) are to be stored and consider the corresponding unamblguous
labehngs p(& ) p(f ) as defined previously. For the labelings p(£ )

= 1...P, to be stnctly consistent the following relation must be true

Er”(,\ 6(“/)) Erw E(‘Y) {(‘7)) <0 (6)

for all A # 5(7), i= 1 n, and v = 1., P This is a system of Pn(m — 1) linear
inequalities in the n2m2 unknowns {r, J(/\ #)}, which can be compactly
represented as CF < 0, where C is the Pn(m — 1) x n2m2 matrix defined as

+1, H(G=)AE=NAM= 5‘7’2)
CiniuXgkpmn={ -1, £(F=i)Ap=")AM=¢)
0, otherwise

(for convenience we use a three-component index for the rows and a four-
component index for the columns), 7 is the unknown compatibility vector, and
0 is the null vector. In practice, it is customary when solving such systems to
introduce a “margin” [11], which also ensures larger basins of attraction [12].
Accordingly, our system is rewritten as C7 <kl <0, where k is some
predetermined constant, and 1 is the unity vector.

One interesting algorithm for solving systems of linear inequalities was
proposed by Eremin [13]. Its main attractive feature, which distinguishes it
from standard methods [11], is that it does solve the system when it happens
to be compatible and automatically yields the “best” approximation solution
(in the sense of Chebyshev) when this is not the case. More specifically, the
algorithm iteratively computes a solution of CF—«xI < eOT, where ¢, is the
defect of the original system, i.e. the smallest ¢ for which the system
C7 — k1 < €l is compatible. (Note that this corresponds to solving the original
system when it has a solution.) Space limitations do not allow us to provide a
description of Eremin’s method which is, however, readily available [13].
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4. Simulation Results

To assess the validity of our model, some experiments were performed
aimed at testing its storing and error-correction capabilities. The learning set
used in the study was taken from [14], and consisted of ten binary digits on a
5x5 matrix (Fig. 1). The training was carried out according to the Eremin
procedure, using a margin k = —10, which appeared to be near-optimal.

2 lEBHEEABE A

Fig. 1. Training set used in the experiments.

For each’ memory pattern, ten perturbed versions were generated by
randomly flipping exactly d bits (for d =0,1,...) and the corresponding
unambiguous labelings were obtained. Also, since unambiguous labelings turn
out to be fixed points for the relaxation scheme (5), a further Gaussian noise
with mean 0 and variance 0.1 was inflicted (this was followed by a successive
normalization step to ensure that the noisy labelings still belonged to K). The
network was then allowed to iterate for (at most) 1,000 steps, and the final
(weighted) labelings were converted into binary patterns by a simple maxima
selection rule. The resulting patterns were then compared with the original
ones, and a success was recorded when a perfect match was achieved. Fig. 2.
shows the percentage of successful recalls, as a function of d.
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Fig. 2. Error-correction performance as a function of the Hamming distance.

As can be seen, the network exhibits good error-correction capabilities,
even for (moderately) high values of d. The results are far superior to those
obtained with standard Hebb-trained Hopfield networks and compare
favorably with the ones reported in [14, Fig. 4], using a Hopfield network
trained with an optimal perceptron-based learning procedure.
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5. Conclusions

In this paper, a novel approach to building associative memories has been
presented which is based upon certain dynamical properties of relaxation
labeling processes. The approach is quite general and allows us to naturally
develop multivalued memories, which are believed to be more closely related
to biology and turn out to be useful in practical applications. The storing
process is formulated in terms of a system of linear inequalities that we solve
by means of an efficient relaxation-style algorithm. Preliminary results over a
set of binary patterns have been presented which demonstrate the effectiveness
of the proposed approach. Further work is in progress aimed at estimating the
storage capacity of the model and evaluating the number of spurious states.
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