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Abstract. Usual neural networks simplify temporal details in order to em-
phasize aspects of information processing and learning. This paper presents a
complementary approach emphasizing temporal aspects at the expense of in-
formational details. A model is proposed to take account of the variability of
neuronal signals in the cerebral cortex and extract valuable mmformation from
the distributions of temporal characteristics in data obtained with single neu-
ron recordings.

1. Introduction

Artificial neural networks are usually static: one input signal corresponds to one
stable output. Even if the stabilization of this solution takes some time, there is no
significant output during this period. An increasing number of models try to include
time, but it is mainly for the analysis of temporal patterns and is obtained by using
an external clock. It is likely that the dynamics of real neurons are much more
complex. At least, the continuous evolution of neuronal signals is a data that is ex-
perimentally available and is not thoroughly exploited in current models of neural
networks.

Neuronal signals recorded in the cerebral cortex are indeed difficult to handle be-
cause they seem very noisy and vary greatly from trial to trial in the same experi-
ment. Statistical tools like peri-event time histograms (PETH’s) are often used to
filter this noise. However, these methods only give time-averaging for neurons re-
corded separately over several trials. In contrast, models often suppose space-
averaging over many neurons at the same time: the information content of the signal
carried by each individual neuron is very poor but the global activity of a population
of neurons can be more stable and significant.

In this paper, we show how we have tried to extract meaningful information on the
population behaviour from the variations of individual neuron signals. The model is
based on distributions of neurons with different parameters and produces distribu-
tions of output signals, both for individual neurons and for neuronal populations.
These distributions can be compared with experimental data on a single-trial basis.

2, Dynémic model

The structure of the model is derived from the multilayer neural network, with spe-
cific adaptations to introduce dynamic aspects (Fig. 1).
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2.1 Cascaded modules

In an ordinary multilayer network, each neuron of a layer receives inputs from all
neurons of the previous layer with a given synaptic weight. The task that must be
performed is learned by adjusting these weights to obtain the desired outputs for
given inputs. Each neuron of a layer then receives its own subset of neuronal signals
from the previous layer and performs a different operation compared to other neu-
rons in the same layer. However, we are not interested here in the learning process
as the experimental data are for a fixed task for which the subject has been trained.
We assume, thus, that the learning phase is over and all synaptic weights are fixed.
We also simplify the connection scheme by introducing a global activity G(z) for each
layer. This activity is defined as the sum of the activities of all neurons in the layer
and characterises the whole layer as a local population of neurons. The global activ-
ity is input to each neuron of the following layer with different synaptic weights w.

F(w,T,b)

Layeri Layeri+1

Figure 1: Structure of the model

2.2 Dynamic activation

The network defined so far acts like a filter transforming the input signal into an
output signal. The same input always gives rise to the same signals in the network,
in contrast to experimental data. Moreover, one can argue that the cerebral cortex is
not a passive filter but an active processor that generates activities instead of simply
transforming them. We have, thus, introduced a dynamic activation scheme based
on signals from other brain areas to modulate the responsiveness of the network. We
model this activation with a background of neuronal signal input to each neuron with
a constant frequency of spikes b. The data signal is superimposed on this back-
ground.

2.3 Single neuron

To characterise the responsiveness of individual neurons, we must examine the dy-
namics of the neuronal signal at the level of the cell membrane potential. We use a
simple leaky-integrator model [1] to describe the generation of excitatory post-
synaptic potentials (EPSP’s) following spikes in presynaptic neurons. In the cerebral
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cortex, it has been estimated that, as sources of input, there are in the order of 10*
synapses on a single neuron [2], and that the total frequency of incoming spikes is
high compared to the time constant of the membrane. Thus, we approximate the
total incoming neuronal signal with a continuous function f,(z) (Hz) giving the in-
stantaneous frequency of spikes. The response of the cell membrane to this input is:

v

(1) =ty +22 [ 1,575 M

T

where v, (mV) is the intensity of the EPSP created by a single spike on a synapse of
weight 1, w, is the synaptic weight, and 1, is the time constant of neuron 7.

When the membrane potential u,(1) rises above a given threshold voltage 6 (mV),
an action potential is fired. After that, the membrane potential returns to the initial
value ug,, then rises again following the same equation, but with different initial
conditions. To compute the point where the membrane potential crosses the thresh-

old, we approximate this potential by its tangent at the time t,", when the previous

action potential occurred. Doing so, we derivate the integral in eq. 1 and come back
to the input signal, multiplied by a constant factor. As a result, the times of occur-
rence of output spikes is given by the following recurrence relation:
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We assume that the initial value u,, of the membrane potential is the potential
maintained by the background input of dynamic activation signal. In a simple one-
compartment integrator model, an action potential would clear all previous informa-
tion. In the present model, it is as if the background input was made directly to the
cell body, while signal inputs are made on the dendrites. The dendritic inputs are
cleared by the firing of an action potential, but inputs onto the soma regain influence
soon after the action potential to restore the base potential ug,.

2.4 Neuronal signal ~

We consider that the unit of a neuronal signal is a peak in the instantaneous fre-
quency curve, and we use triangular signals with the time of occurrence and ampli-
tude of peak as the main characteristics. The input of the network is a triangular
signal starting at =0 and ending at 7=tz, with a peak at r=tp. Each neuron of the
first layer outputs a train of spikes as described by eq. 2. The instantaneous fre-
quency of spikes is computed as the inverse of the time interval between two succes-
sive spikes and assigned to a point in between:

Py 1 vswn i
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This function can then be extended to a continuous function of time. As the input is
made of successive ramp signals, this implicit relation leads to a second-degree
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equation that can easily be solved. When the output signal g,() of all neurons of the
layer are summed, we obtain a global response that we approximate with a new tri-
angular signal, starting at a time ¢ and with new characteristics 7p and fg. This tri-
angular signal is input to the next layer.

2.5 Distributions

The model of individual neurons described above is characterised by several parame-
ters. Some of them are common to all neurons of the network, but others are differ-
ent from neuron to neuron in each layer. We define a distribution density function of
the parameters that vary. We use continuous distributions, assuming a large number
of neurons per layer. The summing of the activity of all neurons in a layer can then
be performed as an integral of functions g.(f) weighted by the distribution density.
There are three parameters to consider: the synaptic weight w, the time constant T,
and the frequency of the background signal b. The response of a layer is thus ex-
pressed as a triple integral:

G(t)=N. jw L IbF(w,’c,b).g(w,‘t,b,t).db.d‘tdw @)

where N is the number of neurons in the layer, F{w,1,b) is the distribution function,
and g(w,7,b,1) is the output g,(z) of individual neurons expressed as a function of the
three parameters and time.

As we have no a priori information on the shape of the distributions, we use nor-
mal distributions. F(w,7,b) is thus a product of three normal curves, one for each
parameter. The distribution functions for the synaptic weight w and the time con-
stant T are fixed, but the distribution function of the background frequency b is
modified for each trial. The width of the distribution is fixed but the whole curve is
moved between two limits. For each trial, we use the same distributions for all layers
of the network.

3. Analysis

The model does not include any loop to control the stability of the network as in the
case of real systems. We must manually tune each of its parameters so as to obtain
realistic results. However, the overall characteristics of these results do not critically
depend on the parameter values. An entire set of simulation results contains the ac-
tivity profile of each neuron of the network for each trial. This set of data can be
analysed with the same tools as experimental data, while giving additional informa-
tion that cannot be inferred from real data. In particular, histograms of the activity
of a single neuron for several trials can be broken down to individual curves.

More detailed analyses can be performed than with histograms, but the analysis of
experimental data must be refined accordingly. We have, thus, developed a method
to extract instantaneous frequency profiles from individual recordings of neuronal
spikes. We plot the successive times of occurrence of spikes against the cumulated
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number of spikes. Smoothing this curve conserves the global number of spikes while
compensating for the stochastic nature of their times of occurrence. We can then
compute a frequency of spike between each pair of successive spikes and assign it to
the point in between, as we did for the model. The timing and amplitude of the
peaks in this frequency curve can easily be extracted. Fig. 2 shows the result ob-
tained in the case of a neuron with two peaks of activity in most trials.

200T
130T
Frequency (Hz) 160T
1407
1201

-500 - -300 -100 100 300 500
Time (ms), 0 = stimulus onset

Figure 2: Example of dual-peak responses

The timing and amplitude of peak activity can be studied in scattergrams against
other variables such as the total reaction time (RT) of the network. The total reac-
tion time of the simulated network is defined as the onset of activity in the last layer.
We can study the influence of each parameter of the model on the shape of the scat-
tergrams. For example, the upper and lower limits of the total reaction time are
mainly governed by the range of variation in the base frequency distribution. We
can also see that neurons with strong connections with the previous layer, or with
long time constants, react faster and more strongly than neurons with weak connec-
tions or short time constants. As a consequence, we could infer the static parameters
(layer number, synaptic weight, time constant) of the neurons from the characteris-
tics of the whole set of trials with different background frequencies b.

Of course, our simple model cannot account for the complexity of real networks
and such a detailed analysis cannot be done for real data. The main discrepancy
comes from the single neuron model. The relation between the amplitude P™ of the
output peak for layer m and its time of occurrence is uniquely determined by a rela-
tion easily derived from eq. 3: the output frequency is maximum when the input sig-
nal is maximum and thus:

tp =tp +—— ©)
P P 2p™

A neuron model with more subtle variations of the response time would give more
realistic results.
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We can complete the analysis of scattergrams with statistical tools. Fig. 3 shows,
for example, the variance of the time of occurrence of peak plotted against the mean
time of occurrence normalised with the total reaction time. This figure shows that
the cascaded structure of the model is compatible with experimental data. Due to
population behaviour, a neuron in one layer can react later than a neuron in the next
layer and still participate in data transmission. The variability in neuronal signal
occurs at each stage of information processing and cumulates from the stimulus in-
put to the motor output. There is no evidence of a critical decision-making centre
causing the whole variability of the total reaction time.
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Figure 3: Simulated and experimental scattergrams of the variance of peak time

4. Conclusion

The analysis based on the proposed model is complementary to the usual informa-
tion-oriented models. The dynamics of the neuronal response during the execution
of a task can also give information about the organisation of the network, even
though the mechanism by which the information is processed is totally neglected.

The model we present here is only an instance of a more general framework mak-
ing the link between models at several levels: single cell, local network, global net-
work,... Models of each level can be easily modified and the influence of the
parameters observed in the global output. As the results of the simulations can be
directly compared to real data, this could lead to a better cohesion between experi-
mental data and theories [3].
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