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Abstract. We consider in this paper the improved features of recurrent
neural networks where we associate to each neuron-like unit an adapta-
tive time constant T;. In order to quantify the effects of the 7;’s on the
network, we present new results using a latching test (to evaluate the
long-term memory capabilities) and a study of the modification of the
stability regions with the time constants. Finally, a practical application
of the Mackey-Glass chaotic signal prediction is presented.

1. Introduction

The last few years, many researchers have been attracted by recurrent neural
networks because of their amazing capability to exhibit complex dynamic be-
haviour. They can be trained to exhibit a fixed point behaviour (the network
evolves toward a fixed state such as Hopfield network or Boltzmann machines) or
to exhibit a non-autonomous non-converging dynamics (the networks behave as
oscillators or as finite automata). Neural networks of the second category have
time-varying inputs and/or outputs and are particularly suitable for adaptative
temporal processing such as signal production (motor control), signal recognition
(speech recognition), signal prediction (time series prediction) or signal process-
ing (adaptative filtering). In this paper, we will present new and innovative
results to quantify the effect of adaptative time constants on the capabilities of
recurrent neural models.

2. Recurrent neural model and learning algorithms

We consider a general recurrent neural network model governed by the following
equations :
dyi _ . _
Tl—c—l-t— = —Y; + F(.’L‘,) +I; with x; = Zwﬁ Yj (1)
J
where y; is the state or activation level of unit i, F'(o) is a squashing sigmoid-

like, I; is an external input (or bias) and z; is called the total or effective input
of the neuron.
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Let us point out that our model is governed by continuous-time equations and
that we associate to each neuron-like unit an adaptative time constant that takes
part in the learning process. Equations (1) define the most general recurrent
model (except the fact that we do not consider time-delay connections). More
simple models can be derived by discretization. For example, if we use a time-
step At equals to 1 with all the time constants T; equals to 1, the discretization
of equations (1) gives the simple recurrent model proposed by Williams and
Zipser [6].

To train a network governed by equations (1), one can use either the Real-Time
Recurrent Learning (RTRL) algorithm presented by Williams and Zipser [6] or
the Time-Dependent Recurrent Backpropagation (TDRBP) algorithm derived
by Pearlmutter [5]. In the TDRBP algorithm, the error gradients are computed
from the differential equations (and are thus continuous in time). The resulting
equations then must be numerically integrated for simulation. In the RTRL
algorithm, a different approach is adopted by first discretizing the differential
propagation equation (1) and then calculating the gradients from the discretized
equations. RTRL and its variants have been called forward gradient methods,
as opposed to TDRBP which is a backward gradient method.

3. Theoretical results

This section will present new theoretical results concerning the association of an
adaptative time constant to each neuron-like unit of a recurrent neural network.

The general task of temporal processing held by recurrent neural networks brings
out the necessity for the system to effectively deal with the temporal nature of
the incoming data, that is to allow a past input to properly exert its effect at a
subsequent time. Generally, a distinction is made between two types of memory
mechanisms according to the time interval : short-term or long-term memory.
In the field of neural systems, we can distinguish two types of behaviours that
are the counterpart of the types of memory mechanisms. First, we have those
systems in which the effect of their past inputs decays to zero during time;
they exhibit a forgetting behaviour (in absence of external input, their evolution
asymptotically converges to a unique point, typically the origin, thus nullifying
any previously occurred computation). These models are successfully employed
for short-term memory requirements. On the other side, some models are capable
of maintaining the effect of their past inputs over an arbitrary long interval of
time. Such models, including dynamic recurrent neural networks, are said to
exhibit a latching behaviour.

To handle temporal processing, a dynamical system must obviously exhibit a
latching behaviour but, moreover must satisfy three requirements to be really
efficient : (i) it must be able to store information for an arbitrary duration, (i) it
must be resistant to input noise, and (i) its parameters must be learnable in
reasonable time.

3.1 The latching test
The latching test, proposed by Frasconi et al [3], has been designed to test if the
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three conditions enumerated above are satisfied.

X

For this task, the dynamic system un-
der study has to learn discriminating
between two different sets of sequences,
whose class should be determined by
the values of the input on a fixed num-
ber L of time steps at the beginning of
each sequence of length T' (see Figure
1). If we allow sequences of arbitrary

length, then the problem can be solved
only if the dynamic system is able to
latch information about the initial in-
put values.

The initial input i(t) for ¢ < L are
learnable parameters whereas i(t) is zero-

mean Gaussian noise for ¢ > L. Optimization is based on the mean square error
with targets close to 1.0 and —1.0 for the last time step 7.

{a) )

Figure 1: Latching test. a shows the latching
single recurrent neuron. b and c show the
two trainable inputs.

A set of simulations were carried out to evaluate the effectiveness of dynamic
recurrent networks on this simple task.
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Figure 2: Convergence rate of the learning for a single-recurrent network in the case of the
latching test. The convergence rate is plotted versus the standard deviation gneise Of the
noise and the length of the sequence T'. (a) single-neuron network without time constant,
(b) with time constant.

We investigated the effect of the noise variance g,,is¢ and of the sequence length
T. A density plot of convergence is depicted on Figure 2, each value was averaged
over 30 runs for each of the selected pairs (opoise, I’) (L was chosen equal to 3).
Figure 2a is associated to a simple recurrent neuron without adaptative time
constant, whereas Figure 2b is associated to the same neuron with an adaptative
time constant.

It is clear from Figure 2 that long-term dependencies are much efficiently learned
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with a dynamic neural network. Moreover, the addition of adaptative time
constants significantly improves the robustness of the network in front of an
increase of the standard deviation o,,ise Of the noise.

3.2 Stability regions

Another original way to characterize the influence of T;’s on the network dy-
namics is to compute the stability regions corresponding to some particular
equilibrium points of a learned trajectory and to study their evolutions with re-
spect to time constants. Indeed, the success of regenerating a desired temporal
behaviour, leading to a particular final state, from partial information is directly
related to the stability boundaries of attraction of the corresponding final state.
This success, as we will see, depends on the time constant values.

We are interested here in the stability region of a locally stable equilibrium point
y* of a dynamic recurrent neural network. We will compute these regions using
the classical Lyapunov functions [2].

In order to get exploitable results, we applied this method to a network of three
neurons; the network was limited to such a small size just to allow the visualiza-
tion of the stability regions in the phase-space IR® of the activations (y1,y2,¥3).
We trained the network to follow a trajectory starting at an initial state of the
three neurons and to evolve alone to the desired fixedpoint corresponding to the
initial state.

neuron 3

(b)

Figure 3: Stability regions computed with Lyapunov functions. (a) for a
two fixedpoints system; (b) for a three fixedpoints system.

Figure 3a presents the stability regions associated to a two-fixedpoint system
(base of the training set of the three-neuron network). After the training, we
modified the time constants in a decreasing way to examine the effect of the time
constant values on the network dynamics (being careful that the network still
exhibits the same fixedpoints behaviour). Figure 3a shows the stability regions
associated to both fixedpoints and presents the comparison between the stability
regions of the system with normal and small time constants. Inner regions are
always associated with small T;’s. The axis labels are the respective activations
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y; of the three neurons. It is clear that the first effect of small time constants is
to make the stability regions shrink .

Figure 3b presents the stability regions associated to a three-fixedpoint system
(dotted regions). Once again, after the training period, the time constants are
decreased; the first effect is the same : the stability regions also shrank. Nev-
ertheless, if we go on decreasing the T;’s, we remark that the central fixedpoint
disappears and gives birth to two distinct different fixedpoints.

We see that a simple variation of the T;’s (without any modification of the
weights) can modify the temporal tasks learned by a dynamic recurrent neural
networks. The time constants can enrich the behaviour by adding and/or mod-
ifying the stability regions of the fixedpoints. Such conclusions can be held for
the limit cycles or the strange attractors that the network exhibit.

4. Results

We will now present an practical application in order to investigate the impact
of adaptative time constants on the performance of recurrent neural networks
during chaotic signal prediction. Signal prediction is the classical task where
the input to the network is the time-varying signal and the desired output is a
prediction of the signal at a fixed time increment in the future.

The test signal that we consider is the famous chaotic signal produced by inte-
grating the Mackey-Glass delay-differential equation [4] :
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Figure 4: Comparison between the spec- Figure 5: Fractional error between the
trum of the Mackey-Glass signal and the real and the generated spectra. Solid line
spectrum of the predicted signal pro- is associated to the DRNN, dotted line to
duced by the network. a time-delay neural networks

This signal provides a useful benchmark for testing predictive techniques. For
comparison with previous techniques, we chose 7 = 17, a = 0.2, b = 0.1, and
trained the network to predict six time units into the future.
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In order to evaluate the network performance, Figure 4 shows a comparison
between the power spectrum of the signal generated by the network and the
spectrum of the Mackey-Glass signal?. Figure 4 presents the fractional error
between the real spectrum and the one produced by a network trained with
continuous-time temporal backpropagation with adaptable time delays [1]. The
fractional error is defined as the difference between the two spectra, divided
by the magnitude of the Mackey-Glass spectrum. This latter network presents
a structure of feedforward network with two hidden layers of 10 neurons, one
output and a total of 150 adaptable connections. We clearly see that our dynamic
recurrent neural network outperform the time-delay neural model : the RMS
value of the fractional error falls from 0.252 to 0.064.

5. Conclusion

In this paper, we have shown the interesting new capabilities of recurrent neural
network where an adaptative time constant is associated to each neuron. The
latching test has quantified the improvements on the long-term memory of the
model. Moreover, the computation of the stability regions have shown the en-
richment of the dynamical behaviour due to the T;’s. Several applications were
successfully developped using dynamic recurrent neural networks including time
series prediction, systems identification and control, biomedical applications.
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