ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

Constraining of Weights using Regularities

Joost N. Kok!, Elena Marchiori®!+2, Massimo Marchiori®, Claudio Rossi*

1 Univ. of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
2CWI, P.O. Boz 94079, 1090 GB Amsterdam, The Netherlands
3 Univ. of Padova, via Belzoni 7, 35131 Padova, Italy
4 Univ. of Venezia, via Torino 155, 30173 Mestre- Venezia, Italy

Abstract. In this paper we study how global optimization methods
(like genetic algorithms) can be used to train neural networks. We intro-
duce the notion of regularity, for studying properties of the error function
that expand the search space in an artificial way. Regularities are used
to generate constraints on the weights of the network. In order to find
a satisfiable set of constraints we use a constraint logic programming
system. Then the training of the network becomes a constrained opti-
mization problem. We also relate the notion of regularity to so-called
network transformations.

1. Introduction

The training of a neural network consists of finding a set of weights that mini-
mizes the neural network’s error criterion. Most of the standard methods use
local gradient search techniques. Often this works well;, but there are cases in
which it is problematic, for example for recurrent networks, or networks with
non-differentiable error criteria. Nevertheless, this type of networks can be very
useful in applications (for example in applications based on time sequences).
Moreover, a local method can get stuck in local minima. Therefore, alternative
approaches based on global optimization methods have been proposed. How-
ever, there is a well-known problem with the application of global optimization
methods to the training of neural networks. Firstly, these methods can be
relatively slow. It depends on the application whether this is a problem or
not. Secondly, there is the so-called “competing conventions problem” (see e.g.
[3,4]). When one chooses a representation (in this case for a neural network),
then it can be the case that the same individual has more than one represen-
tation. This enlarges (in an artificial way) the search space. The standard
approach is to find a clever representation such that this does not happen. In
this paper we take a different approach. We see the problem as a constrained
optimization problem, and through the constraints we avoid the “competing
conventions problem”. First, the notion of regularity is introduced for studying
properties of the error function of the networks. Next, these properties are used

OThe work of the second author was partially supported by SION, a department of the
NWO, the National Foundation for Scientific Research, The Netherlands

267

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

in the development of suitable algorithms for the generation of constraints on
the weights of the network. It is of interest to relate the notion of regularity
to transformations of networks. Due to the formal analysis we get insight in
the “competing conventions problem”: caused by regularities, or dually, by
network transformations. Moreover, the constraints give us a way to see how
the competing conventions problem works out in practice: we can do optimiza-
tions with and without the constraints that avoid the “competing conventions
problem”. Then we propose to use a framework based on a constraint logic
programming system in order to generate by means of the constraint logic pro-
gram the constraints for the competing conventions problem and to integrate
them with other constraints (for example shared weights, domain constraints
etc.). This system checks for the satisfiability of the constraints. Then a global
optimization method (in this paper a genetic algorithm) is used for finding the
optimal set of weights.

2. Regularities of the Error Function

We are interested in the derivation of suitable constraints over the connection
weights that avoid the “competing conventions problem”. To localize these
constraints we investigate regularities in the error function of the network. The
error function E(w) maps the sequence @ of the network’s weights into a real
number which measures the discrepancy between the outcome of the network
and the ‘ideal’ outcome for example given by a training set. The aim is to find
an optimal sequence of weights, i.e., a suitable sequence 1 which minimizes
E(w) (we view the biases as weights). We do not put any restrictions on the
error criterion.

First, we define a convenient syntax for expressing regularities. Consider
the set 7(Var, Fun) of terms, denoted by s,t, also possibly subscripted, with
Fun the standard collection of constants (e.g. 1, 3.5, etc.) and functors (e.g.
+, -, | |, etc.) for the real numbers, and with Var a set of variables, denoted by
z,Y, 2, ... possibly subscripted. A sequence s1,...,s, of terms is also denoted
by §,, while C denotes a sequence of constraints on 7(Var, Fun), like the
ordering relations on real numbers (equality, disequality, >, <, <=, >=), and
is identified with the conjunction of its elements.

Definition 2..1 (Regularities) An 2n-tuple (3,,%,) of terms in 7(Var, Fun)
together with a sequence C(3,,%,) of constraints on the variables of the tuple
is called a regularity w.r.t. C (of rank n). An error function E(wq,...,w,)
satisfies the regularity (3n,%,) if = V(C(3n,tn) — E(3,) = E(f,)), where V
quantifies over all the variables of the terms, and where |= stands for the logical
consequence w.r.t..the standard theory of the real numbers. O

Note that we use universal quantification over the variables, in particular
over the weights. For instance, for a real number r > 0, the regularity
(z1,29,21 + 1,22 + 7) wrt. 3 > 0,25 > 0 specifies that the error func-
tion E is periodic on the domain of the non-negative reals. In the sequel we

268

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

shall omit-C if it is the empty sequence (corresponding to true). Moreover, we
shall focus on regularities whose first n terms are distinct variables, denoted
by (#1,...,Zn,t1,...,t,). We treat four kinds of regularities: for each kind of
regularities, we study possible constraints on the weights which can be derived
from the regularities in order to restrict the search space for the training of a
neural network. We also give for each regularity a “neural” example, and show
how a network that does not satisfy the constraints, can be transformed into a
network that does satisfy them.

Equality Regularities An equality regularity is a regularity such that at least
two of the t;’s coincide. For instance, for a binary error function E the regularity
(1,22, 1,2) states that the value of E does only depend on the first argument
of the error function, that is, for all real numbers r,7’ we have that E(r,7') is
equal to E(r,r). From this regularity one can derive the equality constraint
1 = z3, In this way, we constrain the value of the second argument to be
the same as the first argument. For a neural network, this kind of regularity
can stem from the fact that a part of the network does not contribute to the
outcome (i.e. for example a part of the network is disconnected). Assume
that we have a network with a disconnected part which does not satisfy the
constraints. Then we can transform the network by replacing the weights in
the disconnected part by other weights, such that the equality constraints are
satisfied. -

Product Regularities Let a denote a term of T(Var, Fun). A product regu-
larity with respect to « is a regularity in which some of the ;s are of the form
a-z;. For instance, for a binary error function E the regularity (z1,z9, 221, 22)
w.r.t. > 0 says that the value of F does depend on z3 and only on the sign of
z1. The constraints on the weights that one can derive are of the form z; = r,
where r is any positive real number. ‘

For instance, consider in a neural network a unit u that has a hard limiting
transfer function, say g(z) = 1 if z > 0 and g(z) = —1 otherwise. Then
the error function has this kind of regularity, because we can multiply all the
incoming weights with a positive number, and we do not change the output of
the unit. If we have such a unit in a network that does not satisfy the constraint,
then we can scale (by dividing by L:ﬂ), all the weights of the incoming arcs of
the unit. In this way the selected weight w becomes either equal to r or to
—r. This network transformation does not affect the outcome of the neural
network, and hence not the error function.

Inversion Regularities Another type of regularities are the so-called inver-
sion regularities, where for 1 < i < n, the term t; is either equal to z; or to —z;,
and at least one of the t; is equal to —z;. The constraints on the weights one
can derive from these regularities fix the sign of one z; either by the constraint
z; > 0or by z; <O0.

Such regularities appear in the error function of neural networks with units
with odd transfer functions. A transfer function g is odd if for all real numbers
r, g(r) = —g(—r). A typical example is a sigmoid transfer function. If we have
a network with node u that has an odd transfer function, and that does not

269

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

satisfy the constraints, then we we can transform the network by changing the
sign of the weights of all the input and output arcs of u. This transformation
does not effect the outcome of the neural network, hence it does not effect the
error function.

Permutation Regularities Another class of regularities are the permutation
regularities. Let o be a permutationof 1,...,n. Then (z1,...,%n, To(1)s- -+) To(n))
is called a permutation regularity (w.r.t. o). The constraints that one can de-
rive from these regularities enforce a total ordering on the elements that can
be permuted.

For example, such regularities appear in the error function of a feedforward
neural network, where we can permute hidden units of the same layer. Here
groups of weights in the network can be exchanged without changing the error
function. We can give a total ordering on these groups of weights as follows.
Assume that we have a function, that given the incoming and outgoing weights
of a node, yields a real number. Then we can order the nodes according to
these numbers. The function can be for example, the weight on the leftmost
incoming weight, but also the sum of all the weights. The first possibility yields
constraints that for each layer, except the output layer and its predecessor,
enforce an ordering on the weights of the output arcs of one unit. Note that if
a network does not satisfy such constraints, then we can permute nodes such
that it does satisfy them. This kind of transformations does not affect the
outcome of the network, hence it does not effect its error function.

For neural networks, the effects of these regularities can be exponential.
For example, the inversion regularities can enlarge the search space by a factor
2", and the permutation regularities by a factor n!, where n is the number of
hidden nodes.

3. Training of Constrained Neural Networks

The previous section showed how regularities are related to constraints on the
weights of a neural network. In this section we present some algorithms for the
generation of such constraints. We consider permutation regularities and intro-
duce two algorithms for generating constraints on the weights of a feedforward
network, and two algorithms for recurrent networks. These algorithms have
been implemented as constraint logic programs in the programming language
ECLPS® (ECRC Common Logic Programming System), and are integrated
together with a genetic algorithm in a single framework. We discuss some
results on the training of neural networks performed using this framework.

The following two algorithms generate constraints on the weights of a feed-
forward network in order to fix its geometry. They yield constraints for the
permutation regularities, and are based on the ideas sketched in the subsection
on permutation regularities. For each layer, the first algorithm acts on the
weights of the output arcs of one unit, while the second algorithm acts on the
weights of more than one unit. Observe that we assume that the weights of the
network can already be subject to some given constraints.

270

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

Algorithm 1 For every layer, except for the last two (i.e. the output layer and
its predecessor) do:

1. find a unit v of L and let wy,...,w, be the weights of its output arcs;

2. find a permutation o of 1,...,n s.t. the constraint w,(;) < ... < Wo(n) 18
satisfiable.

A more general algorithm is the following one:
Algorithm 2 Let f be a function from sequences of real numbers to real
numbers. For every hidden layer L = (uy,...,u,) do:
1. for every unit u of L let W, denote the value of f when applied to the
sequence of weights of all its incoming arcs;
2. find a permutation o of 1,...,n s.t. the constraint W,) < ... < Wy (n)
is satisfied.

We now generalize these two algorithms to recurrent networks.
Algorithm 3 Consider the network obtained by dropping the self-cycling arcs,
that is arcs going from a unit to the same unit. Mark the input units. Then,
repeat the following procedure, until all units are marked:

1. select an unmarked unit wu;

2. take a unit «' such that there is an arc going from u' to u;

3. consider all the arcs going from ' to unmarked units, mark the units; let
w1,...,W, be the sequence of the corresponding weights;

4. find a permutation o of 1,...,n s.t. we(1) <... < Wy(n) is satisfiable.

Algorithm 4 Let f be a function from sequences of real numbers to real
numbers. Let (uq,...,u,) be all the hidden units of the network.

1. for every umit u let W, denote f applyed to the sequence of weights of all
its incoming arcs;

2. find a permutation o of 1,...,n s.t. the constraint W,) < ... < Wy _(n)
is satisfiable.

Note that the previous algorithms generate strict orderings on some weights.
However, one can replace < by < in those cases where the resulting constraints
are not satisfiable.

We give now some results on the training of neural networks with or without
constraints. For this we use a framework [1] which integrates the constraint
logic programming ECL!PS¢ by ECRC for the generation of constraints, and
GENOCOP [2] as a global optimizer.

We did two series of experiments. The first series on a standard data set
about Iris flowers, a classic pattern recognition problem with four parameters
describing an Iris flower. We used a feedforward neural network with four input
units, four hidden units and three output units. Figure 1 shows a typical run
with error function the sum over the absolute values of errors. The addition of
the “regularities” constraints improves the convergence. We have considered
also runs with different error-criteria, namely the standard squared sum of
errors, and the sum over the absolute values of the cube of the errors, and
obtained analogous results.

The second series of experiments employs a data set containing the sine of
the natural numbers 1,2,...,50. The neural network is used to predict the

271

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 267-272

QUTPUTS o] 100 160 ﬂnmm 30 400 450 500
Figure 1: The network for the Iris A typical run
INPUT v

9
%
7/
O

QT
OUTPUT T m W ko e W W e e
Figure 2: The network for the ST A typical run

next value. In the experiments we used a recurrent network with one input,
four hidden units and one output unit: the transfer function is the sigmoid on
[—1,1] for the hidden units, and a linear one for the output. A typical run of
the system with standard error function is shown in Figure 2. We also see here
that the “regularities” constraints improve the convergence.

References

[1] J.N. Kok, E. Marchiori, M. Marchiori, and C. Rossi. Evolutionary training of
CLP-constrained neural networks. In Proc. PACT’96.

{2] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer, 1994.

[3] H.J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a
given input-output map. Neural Networks, 5:589-593, 1992.

[4] D. Thierens, J. Suykens, J. Vanderwalle, and B. De Moor. Genetic weight op-
timization of a feedforward neural network controller. In Proc. of the Conf. on
Artificial Neural Nets and Genetic Algorithms, pages 658-663. Springer-Verlag,
1993.

272

