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Abstract

1t is becoming increasingly recognised in Al and elsewhere [3] that it is important to understand and
account for relevance in systems for computational and functional reasons. In this paper we give an
account of relevance formally, and address the basic issue of how to preserve relevant information and
ignore irrelevant information from the perspective of neural networks, with emphasis on the application
to pattern recognition. This can provide a basis for further discussion of relevance as well as having
immediate significance for neural networks. Our approach is based on a novel associative network model,
Moving Around Landscape (MAL) [5], which is based informally on kinetics and is concerned mainly with
information transition under constraints. MAL facilitates accommodating relevance in its dynamics 1o
evolve computations that ignore irrelevant aspects of the environments and preserve relevant information.
Experiments on its application to character recogrition show that accommodating one kind of relevance
(topological structure) into MAL enables it to learn relevant internal representations of character images
that are comparable in terms of ordinary metrics, sach as Hamming distance and Euclidean distance.
Thereby character recognition with physical variations is facilitated and the performance of recognition
may be improved.

Category: Models and architectures.

1 Introduction

Physical variations abound in many recognition domains, and they are usually irrelevant to the recognition
process. In these occasions, it is important to determine what type of information is relevant and what
is irrelevant, so that we can design methods to preserve the relevant information and ignore the irrelevant
information. Classification can then be made on the basis of the preserved relevant information. Similar
problems arise in many other areas, such as knowledge-based systems and machine learning {3].

There has been a recent flurry of interest in explicitly working with relevant information. One focus has
been on finding techniques for improving the performance of embedded agents by ignoring or de-emphasizing
irrelevant and superfluous information and making use of relevant information [3). This aims at reducing
the search space, reducing the training space, taking out physical variations, or improving accuracy.

The term “relevance” is so broad that it can be associated with many different concepts in a number
of disciplines including the Al fields of knowledge representation, probabilistic reasoning, machine learning
and neural computation, as well as communities that range from statistics and operations research through
database and information retrieval to cognitive science [3]. Here we give a mathematical formulation of
relevance for the purpose of this paper and further investigation into relevance.

There are two basic issues to be faced when dealing with relevance. One is how to determine what is
relevant to a given task. The other is how to preserve relevant information and ignore irrelevant information,
thereby, for example, improving the performance of embedded agents. In this paper we are concerned with the
second of these issues from the perspective of neural networks (NNs). So we aim at accommodating relevance
in NN to evolve computations that ignore aspects of the environments and preserve relevant information.
We address this issue particularly for the task of pattern recognition.
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Figure 1: Scenario of relevance accommodating internal representation

Generally speaking relevance is a kind of constraint. In order for a NN to be able to accommodate
relevance, it must be able to facilitate imposing constraints on its computation. Very few reports can be
found in the literature on neural networks capable of accommodating explicit constraints on its computation.
In [5] we proposed a novel NN model, Moving Around Landscapes (MAL), which is a kind of associative
network addressing the basic problem of associating from distoried knowledge. This is in contrast with that
addressed by Hopfield networks, which can be characterised as associating from partial knowledge. MAL
can be intuitively imagined as a set of particles’ moving around a landscape. The landscape is formed
in the learning phase in response to a given problem. Particles move around according to forces of two
types: landscape-oriented and task-dependent. The movement of particles induces the state transition of
the network, and hence accomplishes the computation as required. The relevance of interest comes in a
form of constraint on the task-dependent forces which affect the state transition of the network, and the
computation in the sequel. Therefore MAL is employed here as a platform to accommodate relevance.

Section 2 is committed to the formulation of relevance mathematically. In Section 3 the MAL we use to
accommodate relevance is briefly outlined, and Section 4 shows how useful information (i.e., relevant internal
representations) can be obtained through accommodating relevance in MAL, and presents some experimental
results concerned. The last section concludes with some discussion and directions of future research.

2 Mathematical formulation of relevance

Basically, relevance is a measure of the contribution of a piece of data, a feature, or a collection of data to
the performance of a given task. Formally, consider the mapping: h € H : X — Y. X and ¥ are any two
spaces called instance space and ouicome space respectively, and H is a space of functions, where each h € H
is called a decision rule on X x Y. To indicate context, H is sometimes referred 1o as Hyxy .

Definition 2.1 A generator of any space X is a set or vector of variables, A = (A, -, A4}, such that when
Ay, -+, Ap go through all their possible values, A traverses X. Any subset of A is called a feature of X.
Denote ¥} as the space of all possible features of X for a given generator A. Where there is no ambiguity,
¥4 is simplified as W x or even .

A generator of a space can be regarded as a represenfation scheme for this space. Just as a space can be
represented in different ways, a space can also have many different generators. Since generators determine
spaces, and in particular the relevance of spaces to tasks, generators are also referred 1o as relevance labels.

Definition 2.2 Let X be the instance space, Y be the outcome space, ¥x be one feature space of X', and
Hxxy be the decision rule space. Point relevance is defined as a function r, : X x ¥y x Hyxy — {0.1}
such that for any « € X, for any ¢ € ¥x, and for any h € Hxyy, rp(z, ¥, h) = Lif g—iﬂr # 0 rp(z, v, h) =0
otherwise. Let P be the probability distribution of X. Feature relevance is then defined as a function
ry Wy x Hyxy — [0,1] such that rg(1p, h) = fx rp(z, ¥, h)dP(z). Assume further that @ is the probability
distribution of ¥y . Then space relevance of X to any h € Hx v is defined as a function r';x THyxxy —[0,1]
such that for any h € Hxxy, ¥ (k) = fwx rp(¥, h)dQ(y).

When X has very low space relevance to the decision rule, the decision making may be ineflicient,
and therefore we need to transform X to V which has higher space relevance value. A revised scenario
accornmodating V' is shown in Figure 1, where, X and Y are any two spaces as before, and H is a space of
functions, where each h € H is now called a faskon X x Y. h is decomposed as go f %, where f € F is
called a representation rule or simply R-rule of H, and g € G is called a decision rule of H. V is called a

'We use the term parficle just to facilitate accounting for our model, and do not assume any physical meaning.
25 is the function composition operation: g o f(x) = g(f(x)).
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representation of X determined by f. Suppose V is generated by A, and W% is the corresponding feature
space. Then the R-rule f may be regarded as A-type feature ertraction operation, denoted fy where needed
for emphasis, and V can be regarded as the set of instantiations of the feature space, denoted V where
needed. The expectation that V has higher space relevance to the decision rule leads to the following formal
definition of relevant representation.

Definition 2.3 Let P be the probability distribution of X, and Py be the probability distribution of V
which is obtained by Py(v) = 37y, P(z). Let rX(h) be the space relevance of X to h € H, and r¥(g)

be the space relevance of V to g € G. If r¥(g) > rX(h), then we say that V is a relevant representation of
X with respect to h = g o f, and f is then said to be a relevant R-rule.

Next we will give some examples of this formulation.

Example 1: Weather Forecasting. Consider the task h of forecasting whether or not there is rain
in London based on the database X in the Meteorological Office in London. In this case the X is taken as
the instance space which is the set of meteorological data at different times in London area. Each z € X
consists of many different types of meteorological information. Assume for present purposes that these are
temperature, humidity, wind speed and air pressure, which together form the generator of X. However, not
all the meteorological information will affect the task h. In order to reduce the search space and speed up
decision making, we need to extract from X the information relevant to the task. The extraction results in
V, which is a subset of X relevant {0 h. The generator of V is assumed to include humidity and air pressure.
The representation rule f is used to extract that relevant information from X. The decision rule g is used to
forecast whether or not there is rain in London based on the relevant information. In this case we are mainly
concerned with the space relevance, and it is easy to know that r¥ (¢) > rX(h). If we are asked “what data
contribute to the forecast?” we will probably use the feature relevance, and pick up those features that have
higher feature relevance values.

Example 2: Statistical Learning. Using the same setting as in Example 1, suppose further we are
to let computer learn how to accomplish the task k. If we use X as the working data set, and pick up m
successful examples from the previous forecast experience as training sample, then it seems obvious that the
learning result can not match, in terms of the generalisation ability, similar result in the case where we use
V as the working data set and pick up same number of examples as training sample. This is because V is
more relevant to the task than X.

This example can be generalised to a general question in statistical learning: Given a fixed number of
training examples, can we improve the performance of the learning results for a given learning
algorithm? And by how much can we improve? To answer these questions, theoretically we could
use the feature relevance and space relevance and transform a less relevant instance space to a more relevant
one, and then apply learning algorithm to the samples based on the more relevant instance space.

Example 3: Character Recognition. Consider the task of learning to recognise character, which
is mentioned at the beginning of Section 1., Assume that the instance space X is the set of all possible
physical image vectors of a given character set, which is the usual case in practice. Since the size of X is
usually very large (even infinite in some cases) due to irrelevant physical variations, in order to get certain
level of generalisation ability we normally need a large number of training examples [4]. Sometimes this is
impractical. Therefore we normally need to transform X into some representations that are much smaller
in size but are more relevant to recognition. The relevant representations could be, for example, a set of
instantiations of the number of cross-points and the number of end-points, or a set of topological structures as
used in the example presented in Section 4. Based on these relevant representations, the learned character
recogniser will have better generalisation ability [2]. Structural approach to character recognition is one
example in this respect. The somewhat implicit concepts used in these approaches are the feature relevance
and space relevance. The generators of relevant representations tend to be invariant of physical variations,
and to certain extent capture the most distinctive characteristics of the characters.

The general research into relevance can provide guidelines on how to represent a universe of objects better
in order to facilitate decision making and to improve the performance of embedded agents. But in this paper
we focus on a more specific problem, that is, how to accommodate prior knowledge of relevance label in MAL,
and as an example, by doing so, how to learn relevant representations for character recognition. A more
general discussion on relevance from the perspective of machine learning and neural networks is presented
in 2]. :
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3 Moving Around Landscapes (MAL) network: an outline

MAL is an information transition system which can be perceived intuitively as a set of particles moving
around a landscape, and we use this model in the discussions below. A pattern is represented by a set of
particles with the same topology as the pattern, placed in a network of units ~ the landscape. The fact that
a particle is placed at a unit corresponds to the activation of this unit, while the fact that no particle is
placed at a unit corresponds to the inhibition (deactivation) of this unit. What we are basically concerned
with here is the movement of the particles in the landscape due to the relationships between the particles
and the characteristics of the landscape.

An MALis a tuple N = (M, L), where M is a finite set of logical units, and £ is a landscape (see below)
over which the logical units can move.

A landscape is a tuple £ = (U,C), where U is a finite set of N physical units, which is a subset of an
n-dimensional Euclidean space; C is a set of ordered pairs of elements of i denoting the connections between
the elements.

The mass of logical unit @, denoted m,, can be understood as its information content. The state of
physical unit i, denoted m;, is the sum of the masses of all the logical units at this unit, which is a measure
of the local information at this physical unit.

With each connection {7, j} € C is associated a slope ki; € R", where ki; = ki;I;;, and I; is a unit vector
directed from physical unit ¢ to j. ki; Is a quantitative measure of the local possibility that information
moves from physical unit i to j, or intuitively, a quantitative measure of the physical slope from physical
unit ¢ to physical unit j.

A state configuration or simply state of an MAL is uniquely defined by a point in the N-dimensional
Euclidean space, M=(my," - -, mn), whose i*? component m; denotes the state of physical unit i. The stable
state or attractoris a state M satisfying M(¢ + At) = M(t).

Where there is no ambiguity we use unit for physical unit, and for simplicity, we use particle for logical
unil.

The structure of MAL depends on the structure of the landscape. The landscape is usually arranged as
a finite geometrical regular grid, typically of 2D or 3D, over which the particles can move.

The forces inducing the movement of a particle are determined by the following factors: (1) the features
of the landscape; (2) the states of a unit’s surrounding units; (3) the neighbourhood relationship between
individual particles; and (4) the grouping coefficients of the network. Specifically the forces are divided into
gravitational force, resistance force, and binding force. The first two forces arise from the landscape of the
network and are independent of application, while the third force is application-oriented. These forces are
usually constrained by grouping coefficients, which are also related to specific applications.

All the forces above have to be reformulated in different applications, but typically they have the following
forms: ‘

o Gravitational force: landscape
The gravitational force (GF) is due to the landscape which is formed in the learning phase. The GF
exerted on particle a at unit ¢ at time ¢ is typically GF(4)(f) = m, ZjeN(i) ki;G;(t), where G;(t) is
the grouping coefficient defined below, and N(7) is the set of neighbours of unit i. For brevity, in some
cases we denote GF(4;)(t) as GF, or GF;. This notation applies to other forces as well.

o Resistance force: landscape
The resistance force (RF) is usually inertial in nature. It is always in the opposite direction to the
gravitational force. It is a function of the mass, and typically of the grouping coefficient G;. The
resistance force exerted on particle @ at unit ¢ is |RF(44)(t)| = kmaGi(t), where & is a constant.

e Binding force: application-dependent

The binding force (BF) is used to preserve some application-oriented information as the particles move
around the landscape. It is actually a kind of constraint on the movement of the particles. For an
example of the binding force, see Equation 1 below.

¢ Grouping coefficient: application-dependent
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The grouping coefficient (G) is used to guide the movements of the particles. In different applications
it may have different forms. Conceptually the grouping coefficient imposed on unit i, G;, is defined
as the probability of unit i being at the activation state in the final stable state after initialising the
network. It specifies the attractiveness of each individual unit. G; may change with time.

The grouping coefficients are not used individually; rather they are incorporated into the gravitational
forces, resistance forces and even binding forces. The grouping coefficient can appear in two forms:
plain and non-plain. For classification type applications, we do not know in advance which category a
pattern falls into, and therefore we simply set G; = 0.5 for i = 1,2, ..., N; while for verification type
of applications (e.g., combinatorial optimisation or signature verification) we know in advance which
category we are interested in, and therefore we can pre-set the G;’s.

With these forces, the dynamics of MAL may be formulated as follows:

The force exerted on particle a at unit ¢ at time ¢ is:
F(ay;)(t) = aGF(a,,')(t) + ﬁBF(a’i)(t) + 7RF(a,i)(t) = F(a,,-)(t).],'.

If Fa4)(t) > ¢ and Fa5)(t) > Fiq,iv) then particle a will move from unit 7 to unit i, where unit
7 is one of unit i’s closest neighbours (i.e., one grid away) in the direction closest to J;. Note: o
and 7 are constants, while § will usually be scaled down with time until it reaches zero. ¢ is a
constant and usually ¢ = 0.

The learning of MAL (i.e., how to make any prescribed set of states, {M;,Ma,---, M}, as the stable
states of the network or in other words how to form the landscape of the network) is accomplished by the
gradient descent method. The target function E is defined as follows:

1 L N L
E= 52215‘“2 =3 £,
=1 =1

i=1

where Fi = 5~ F{ 4,(0) is the force exerted on unit i due to pattern ! when the network is initialised. The
target function is a measure of the stability of the network. If no particle has potential to move, then the
network is stable and H has come to a local minimum; otherwise the network is unstable and H is relatively
high.
The learning algorithm is based on differentiation of the target function with respect to the slopes. The
differentiation result is:
OF!

Okioj
Note: J! . 18 the unit vector in the direction of the force applied to unit iy due to pattern I.
Based on these results it is easy to design an algorithm to undertake the learning task.

= ml (0)° Gl (O)IFL, (3L, - Lioso)-

4 Accommodating relevance in MAL: learning internal repre-
sentations

In this section we discuss how to accommodate relevance label in MAL to learn relevant internal representa-
tions. In the scenario of Figure 1, we assume that the relevance label A of the relevant instance space for the
task A is known a priori, but the available instance space X is not generated or labelled by A, therefore we
need a representation rule fj to transform X to V) that can be generated or labelled by A and hence it is
relevant to the task. In other words, the embedded agent knows in advance what kind of feature is important
to the decision, or the agent knows the required V), ; however the available data set is not satisfactory. What
we are going to do here is to find ways of approximating the fa in the framework of MAL by using the
knowledge of A and V4 - namely, learning internal representations by MAL.

The task of learning internal representations based on MAL is accomplished by training the network
with the relevance label A specified as a constraint on the binding forces. The R-rule fj is the trained
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Figure 2: Some physical images of A’ and 'B’
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Figure 3: Internal representations of the physical images in the figure above learnt using MAL

(committed) MAL network, the computation of fa is through the dynamic evolution of the network, and
the internal representation is the set of all stable states of the network.

For any z € X, to compute the internal representation of z with fo, we must first map z onto the network
and then let the network evolve. The evolution preserves the A-type of information, which is assumed to
be relevant to the decision making and is embodied by the binding forces, and is directed towards a stable
state. The final stable state is the internal representation of z.

‘We have experimented on accommodating relevance in MAL to learn internal representations for the task
of character recognition. The instance space X we used in the experiment is composed of the physical images
of the 26 English capital letters, with multiple variations. These images are generated using the BITMAP
facility in Unix rather than by scanning in order to focus on the effect of internal representation learning
and to save effort in pre-processing (e.g., normalisation, skeletonization, and noise reduction). Some of the
images of A’ and 'B’ are shown in Figure 2. The outcome space Y is the set of labels of the 26 letters.

The instance space X is rich in physical variations which are obviously irrelevant to the task h of
recognition, therefore the relevance of X to h is low. Using examples of this instance space as training
sample will result in poor generalisation ability [2]. To improve the efficiency of recognition, we use MAL
to learn an internal representation for X that has relatively high relevance. In this case the relevance
label A we use is topological structure, i.e., the neighbourhood relationship among image components, which
determines the form of the binding force below; the R-rule f4, i.e., the committed MAL network, extracts
the topological structure for each image through its dynamics; the decision rule is to classify character images
based on topological structures, and therefore the task is topology-based classification.

The network we use for this purpose is a 32 x 32 grid, and the binding force takes the following form:

BF.(t)=ma 3. my|D(Pa(t).Ps(t)) = 1lls ¥
bEN(a)

where N(a) = {b € M : D(P4(0), P4(0)) < &} is the set of neighbours of particle 4, 6 is the neighbourhood
radius, and D(z,y) is the distance measure in grids between ¢ and y. The grouping coefficients are plain.
The updating of the state configuration is done sequentially.

We trained the network with one image for each letter. In Figure 2 the first ’A’ and "B’ images were
used in training. After training, the training examples are made attractors of the network, which are the
principal internal representations of the instance space. Other internal representations centre around these
principal attractors. Figure 3 shows the corresponding internal representations of the images in Figure 2,
reached by accommodating relevance in MAL.

Now we discuss the performance of the internal representation learned. We will discern if the internal
representation is a relevant representation of X. Suppose the decision rule for recognition is the Hamming
distance based discriminant function. Then the condition for a representation to be relevant is equivalent to
the following condition

Y [d(fa@), fa(®) ~ pu(a, ) < 3 [d(=,9) - pule, 9] (2)

z,y€X z,yeX

where d is the normalised Hamming distance metric, ps is the canonical metric [1]. In the present case, ps
comes as: pi(z,y) = 0if z and y are images of one character, and 1 otherwise. In this particular application
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this condition can be explained as saying that relevant representation should be able to make instances in
X cluster in terms of ordinary metrics (Hamming distance, Euclidean distance). .

The images in Figure 2 vary moderately. It is obvious, however, that the Hamming distance and the
Euclidean distance could not be directly used to classify them. For example, in the sense of Hamming
distance, the third ’B’ is close to the first A’, but quite distant from any other ’B’ except the last. The
internal representations in Figure 3 are comparable in the desired sense of Hamming distance, since all the
images for A’ are close together, but far away from those for ’B’. Based on these internal representations,
classification can proceed simply by calculating the Hamming distance. Thus we can say that the internal
representations reached in this way are relevant represeniation of the instance space, thereby recognization
performance can be improved. We believe that this approach to character recognition (i.e., first representing
the instance space as another space more relevant to the decision rule, and then making classification with
simpler discriminant function based on the relevant information) is a promising direction of research, though
a lot of work lies ahead.

5 Conclusion

We have presented a mathematical account of relevance, which can cover many situations where relevance is
frequently used, and we have demonstrated its value with a novel NN model, MAL, that can accommodate
relevance to improve the performance of applications. Experiments on its application to character recognition
show that accommodating space relevance in MAL can facilitate learning relevant internal representations
of character images. Thereby recognition with reasonable accuracy can proceed simply by calculating the
Hamming distances between character image vectors.

There is little work in the literature on directly accommodating relevance in NNs. Our work is primarily
based on the MAL. Yet MAL itself, being novel, is a less studied subject in the NN community, and some
theoretical issues remain open. We hope that this paper can draw attention to relevance as well as to the
MAL.
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