ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

Towards Constructive and Destructive
Dynamic Network Configuration

Stefan Wermter, Manuela Meurer

Department of Computer Science, University of Hamburg
22765 Hamburg, Federal Republic of Germany

Abstract. In this paper we describe a combined constructive/destructive
approach for dynamic network configuration. Different from previous
approaches we address dynamic network configuration for recurrent net-
works and for a real-world natural language task of semantic categoriza-
tion. We show that dynamic network configuration can lead to archi-
tectures which “are smaller and faster than static networks and which
perform slightly better on generalization than static networks.

1. Introduction

Most connectionist - and also symbolic - architectures use a predetermined
architecture based on the known and experienced properties of the task. For
instance, for supervised connectionist learning there are not yet generally appli-
cable rules for finding the necessary number of hidden units for arbitrary tasks.
Theoretical results have provided important proofs about the learnability of
functions within certain architectures [5] but unfortunately such results often
contain assumptions which are worst case upper bounds (like exponential num-
ber of hidden units) and therefore cannot be used directly for a particular task.
Because of this lack of theoretical guidelines, typically different architecture
variations are tested in order to determine a good representative architecture.
However, especially for larger real-world data sets, training connectionist ar-
chitectures can be very time-consuming. Therefore, given the lack of current
general theoretical guidelines for network configuration, it would be desirable
to design network configurations dynamically during task learning.

In the past several approaches for dynamic network configuration have been
examined, in particular for feedforward connectionist networks and for small
tasks. Constructive approaches start with a small number of hidden units
and add more units as long as training does not fulfill a desired performance
criterion (e.g. [1, 6]). Destructive approaches start with a number of hidden
units which is supposed to be too large for the given task and prune units as long
as the network performance does not deteriorate under a specified performance

This research was supported in part by the Federal Secretary for Research and Technology
under contract #01IV101A0.

123

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

criterion (e.g. [8, 7, 2]). Combined approaches switch between constructive and
destructive phases (e.g., [4]). In general, starting with a constructive approach
is more efficient since the network starts with a small number of units. On the
other hand, it might be useful to have a destructive phase after a constructive
phase since finding a good architecture might need more units than performing
the task itself. Therefore, it seems to be a promising dynamic strategy to start
with a constructive phase followed by a destructive phase.

In spite of these approaches the experience with dynamic network config-
uration has been rather limited compared with the number of static network
architectures. All work cited above concentrates on small problems (like learn-
ing x-or, encoders, etc.) using only feedforward architectures. In this paper we
describe a combined constructive/destructive approach for recurrent network
architectures using a real-world size data set from semantic categorization.

2. Dynamic Network Configuration

In order to modify the architecture during learning we need a measurement
of the current performance. Since the total sum squared error (also called
global error) is often used for estimating the overall error we also use the
dynamics of this global error (the learning curve) for possible dynamic changes
of the network architecture. If the learning curve shows a steep descent the
architecture learns well, if the learning curve shows a flat asymptotic form the
architecture does not learn well. That is, the gradient is taken as an indicator
for the possible dynamic changes of the network architecture. We will now
describe the overall algorithm in more detail.

2.1. Preprocessing: Computing Sliding Averages

In feedforward networks typical learning curves show a monotonically descend-
ing shape. In this case the gradient of the global error can be used for deter-
mining zones of slow learning. However, we would like to examine dynamic
network configuration for recurrent networks since only recurrent networks can
represent potentially unrestricted sequence patterns. Unfortunately, the intro-
duction of recurrent connections within a connectionist architecture causes a
deviation from the true gradient descent, and learning curves do not have to
be monotonically descending anymore. Therefore, instead of using the direct
value of the current global error the sliding average error E,, is computed over
the last n values of the global errors E(t — 1)...E(t — n). In general this proce-
dure leads to a smoothing of the learning curve while keeping the main shape
of the learning curve.

Et—1)+..+ El—n)

Ega(t) = -

All phases of the algorithm described below will use this smoothed learning
curve.

124

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

2.2. An Overview about the 3-Phase Dynamic Configu-
ration Algorithm

Before we will explain and motivate the algorithm in detail we give an overview
about the dynamic network configuration. The algorithm can be summarized
as follows:

%Constructive learning phase
WHILE learning slope decreasing DO
IF learning slope only slightly decreasing and last
addition long ago
THEN add hidden unit and learn further
ELSE learn further

%Destructive learning phase

WHILE NOT learning curve increasing DO
IF last removal long ago
THEN remove hidden unit and learn further
ELSE learn further

“Post-learning phase
WHILE epoch limit not yet reached DO
learn further

The construction phase starts with a minimal number of hidden units and
adds more units until the performance cannot be improved anymore. Then,
in the destructive phase hidden units are eliminated from the hidden layer.
Finally, there is a post-learning phase for optimizing the found configuration.

2.3. Constructive Learning

Since it is more efficient to grow small networks than to shrink large networks
we first start with an architecture which does not have a sufficiently large
number of hidden units. In all our experiments we start with one hidden unit.
Then, learning proceeds until the descent of the smoothed learning curve is too
small to expect further performance improvement. At that point an additional
hidden unit is added. The descent is measured using the global smoothed error
E,, at the start and end of a window w. If the absolute difference between the
error Eyq(t) at time ¢ and the error Es,(t — w) at time t-w divided by the error
at the last unit addition E;q(teq4) gets smaller than a certain value Aggging a
new unit will be added. The value of the learningslope will be high and units
will not yet be added if the difference between E;q4(t) and E,q(t — w) is large
(that is if learning proceeds successfully) and if Es,(tadq) is relatively small
(that is a bias for longer training with increasing time since E;q(tqqq) will get
smaller over time with increasing additions and generally decreasing learning
curves). Below we show this addition condition:

125

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

|Esa(t) = Bsa(t — w)|
Esa(tadd)

In order to prevent networks from growing too fast, additions will only be
allowed after at least w epochs through the training set.

Learning slope = < Agdding

2.4. Destructive Learning

After learning has been started the learning slope will be rather steep and
decreasing. Each time when learning slows down (learningslope < Agqding)
after a number of learning epochs (time ¢t > t444 + w) a new hidden unit is
added. Then the learning slope typically increases briefly due to the new unit
and finally decreases again. After a number of constructive additions of hidden
units the learning slope will not decrease significantly anymore. This is taken as
an indicator that the constructed network will have learned the task as good as
possible for the current configuration. If the learning slope falls under a value
Aremoving Where Ajemoying is smaller than Agg4ing the constructive phase is
terminated and the destructive learning phase begins.

During this destructive learning phase the network is sequentially pruned
from previously added hidden units. The underlying motivation is that for
learning the task and for determining an architecture more hidden units may
have been added than required for learning the task. Therefore a hidden unit is
removed as long as the current global error F;, is smaller than the error at the
time when the last preceding unit was removed. Below we show this removing
condition:

|Esa(t) — Eya(t — w)|
Esa(tadd)
In order to prevent networks from shrinking too fast, unit elimination will

only be allowed after at least w epochs through the training set, similar as in
the constructive phase.

Learning slope = < Avemoving < Aadding

2.5. Post-learning

The destructive phase is terminated as soon as the global error E;, of the
current epoch is bigger than the error at the removal of the last hidden unit.
In that case only the last removed unit led to a performance decrease. Therefore
this single unit is added again. After the dynamic construction and destruction
of the network we let the network settle and optimize for the current found
network configuration.

3. Semantic Context Classification

The dynamic network configuration above was tested with a semantic context
classification task. This task is based on a title corpus of several thousand

126

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

phrases described in detail in [9]. Here we just use part of this corpus as a
well-suited testbed for dynamic network configuration. 795 phrases belonged
to 10 different semantic classes: theology, history, law, mathematics, chemistry,
geology, electrical engineering, computer science, art, and music. The task was
to learn the training phrase classification and to generalize to new test titles.
277 of the 795 phrases were used for training, the rest was kept for testing
generalization.

Each word was represented with a 10-unit plausibility vector which repre-
sented the normalized frequencies with which this word occured in the semantic
classes in the corpus. Each class was represented with a 10 unit vector with
the single desired class unit represented by a 1 and all other units by a 0. Since
the phrases can be of arbitrary length we used simple recurrent networks [3].
The input to this network is a sequence of words, one at a time represented
by 10 units, the output is a corresponding sequence of one class, one at a time
represented by 10 units.

As a benchmark comparison, static simple recurrent networks were tested
with different architectures. The learning rates used were 10-2, 103, 10~4%,
the number of hidden units was fixed to 4, 8, 12, and 16. For each of these
combinations three training runs were performed with 4000 cycles. The best
results were found for a learning rate of 102 and 12 hidden units. For this
configuration the best network had a training and test set performance of 85%
and 79% respectively (see table 1).

| Network - | Training | Test | Hidden Urﬁts Time

Static 85% 79% 12 299:17
Dynamic 82% 81% 9 257:07

Table 1: Best training and generalization performance. Time is shown in min-
utes and seconds

For the dynamic networks we performed the same kind of experiments as
for the static networks using the same learning rate of 1073.1 The best results
were 82% on the training set and 81% on the test set. The improvement on
the test set is much more important than the deterioration on the training set
since we are primarily interested in generalizing the learned behavior to new
examples. Besides the slight improvement on the test set, we can see that the
dynamically determined network used less memory and time to come to these
results. Rather than 12 as in the best static network, the best dynamic network
used only 9 hidden units. Furthermore, training in the dynamic network (267:07
minutes) was faster than in the static network (299:17 minutes).

1The learning slope for the constructive phase was 0.05, for the destructive phase 0.01.

127

ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 123-128

4. Conclusions

In general, we could observe slight generalization, memory and time improve-
ments for the best dynamic recurrent networks compared with static networks.
In contrast to previous work we have concentrated on dynamics in recurrent
networks and we have applied this technique to a real-world problem of cat-
egorizing titles according to their semantic classes. The improvements found
are particularly significant, if we consider that a dynamic network will de-
termine the architecture automatically while learning the task. Furthermore,
many static networks have to be trained for testing different architectures and
we cannot be sure whether a certain number of hidden units is appropriate.
In contrast, dynamic networks learn this task while determining the architec-
ture and have the potential to arrive at smaller, faster and better performing
networks.

References

[1] T. Ash. Dynamic node creation in backpropagation networks. Technical
Report ICS Report 8901, University of California, San Diego, 1989.

[2] A. N. Burkitt. Optimization of the architecture of feed-forward neural
networks with hidden layers by unit elimination. Complex Systems, 5:371—
380, 1991.

[3] J. L. Elman. Finding structure in time. Cognitive Science, 14:179-221,
1990.

[4] Y. Hirose, K. Yamashita, and S. Hijiya. Back-propagation algorithm which
varies the number of hidden units. Neural Networks, 4:61-66, 1991.

[5] K. Hornik, W. Stinchcombe, and H. White. Multilayer feedforward net-
works are universal approximators. Neural Networks, 2:359-366, 1989.

[6] N. Indurkhya and S. M. Weiss. Heuristic configuration of hidden units
for neural network classifiers. Technical Report TR-279, Department of
Computer Science, Rutgers University, 1991.

[7] M. C. Mozer and P. Smolensky. Skeletonization: A technique for trimming
the fat from a network via relevance assessment. Technical Report Tech.
Report CU-CS-421-89, University of Colorado, Boulder, 1989.

[8] M. C. Mozer and P. Smolensky. Using relevance to reduce network size
automatically. Connection Science, 1(1):3-16, 1989.

[9] S. Wermter. Hybrid Connectionist Natural Language Processing. Chapman
and Hall, London, UK, January, 1995.

128

