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Abstract

In this contribution is established a specific property of the Competi-
tive Learning Vector Quantization algorithm (also known as the Kohonen
algorithm with O neighbor): in the l1-dimensional setting, that is when
the examples w® to be coded are scalar with distributioh f, uniqueness
of the equilibrium point is established under In-concavity assumptions on
the density f of the distribution p. The proof relies on the celebrated
(finite-dimensional) Mountain pass Lemma. A counter-example is exhib-
ited when f does not satisfy this assumption.

Among all the adaptative algorithms for quantization the so-called Competi-
tive Learning Vector Quantization algorithm (or simply Vector Quantization
algorithm or Kohonen algorithm with 0 neighbor) can be seen as the ancestor
of the myriad of adaptative quantifiers devised ever since (see [8]). The strik-
ing simplicity of its implementation, along with its quite satisfactory efficiency
makes it one of the most used algorithm for quantization.

Among many interesting features, the VQ algorithm has the property to
derive from a potential that is to be the stochastic gradient descent related to
a differential function, namely

Erl:(xl, e axn) = Ré 122171 ”1171, - ’U,“2[1,(dU)
where (21, --,n) € (IR%)™ is a generic n-prototype, || . || denotes the Euclidean
norm and p is the probability distribution of the R%valued vector examples
wl, -+, ,wt, -+ to be coded. The w'’s are also assumed to be statistically in-

dependent. The distribution 4 is supposed to have a second moment that is
/ llu||%p(du) so that E¥ is finite. E¥ is called the distortion.
R4 .
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The prototype vector(s) that best “sum(s) up” the distribution u of the
“examples” are those that achieve minga). E#. The existence of such vectors
was established in a quite general setting e.g. in [6] (or [5]). Furthermore such an
“optimal” vector turns out to be an excellent n-tuple for numerical integration
(see [6] or [5]). However the only way to be sure that the related VQ algorithm
will converge toward such an optimal quantifier is to prove that all its possible
limit points, that is the zeros of VE¥, achieve the minimum value of E#. As
a matter of fact the general theory of stochastic approximation shows that the
VQ algorithm in its regular form cannot avoid getting “trapped” into some
parasitic local minima (while metastable saddle points or local maximum are
almost surely be avoided, see [4] or [2]).

Anyway as soon as the example dimension d is greater than 1 one cannot
expect all critical points to be minimizers. Thus if a distribution u has inde-
pendent marginals u! and p2? any n-grid vector z*("1) @ z*(*2) made up with
a zero (™) of VE;{: and a zero z*("2) of VE;{: is a zero of VE¥ while any
simulation shows that, usually, such grids are saddle points. Practitioners sum
up this property by the heuristic rule “One d-dim vector quantifier works better
than d parallel scalar quantifiers”.

In one dimension, the true uniqueness of the zero of V E¥ is hopeless too since
the distortion is a symmetrical function. However the question of geometrical
uniqueness can reasonably be asked, for example by restricting our investiga-
tions to the n-tuples (1, -, z,) with non decreasing components. It is shown
in the paragraph below that a positive answer can be provided under some
reasonable assumptions on the density f of the distribution u. On the other
hand, a counter-example to uniqueness is provided when f does not fulfill these
requirements.

1 The main result

Theorem 1 Assume that the w*-distribution p has a density f and set m, :=
inf{u/ f(u) # 0} € [~00,+00), M), :=sup{u/ f(u) # 0} € (—o0,+o0]. If f
satisfies

(2)  f is continuous and f >0 on (m,, M),

e In(f) is strictly concave (1)

(22) or
o In(f) is concave and f(my+) + f(M,—) >0,

B
|

then, VE>* admits a unique zero on Fiot:={z € (my, My)" /21 < - <z <
-+« <y} which is a global minimum of E.

A rather unexpected {and exciting) fact is that the proof of this theorem relies
on a variant of the celebrated (finite-dimensional) Mountain pass Lemma. that
says
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Theorem 2 (see [7]) If L : R* — Ry (L for “landscape” when d=2) is a
continuously differentiable function satisfying limg)— 400 L(x) =+00 and if two
distinct zeros of VL are (strict) local minima then VL has a third zero which
can be in no case a local minimum. '

Proof of theorem 1: Step_1: First E* is continuously differentiable on F/*
OE¥
and VE¥ := ( &

—6——-) admits a straightforward continuous extension on
Ti /1<i<n

_FZ’Jr given by

Vie{l,--,n},

OB Tit1 i+ Tie
2 =2 [ (@ - w)f(wdu, where i:="E0 a<i<n,
2 .

i »

&1 :=my, Epy1:= M,. The set F* being convex, one easily shows that,
for every € € (0,1/2), Id — eVE¥ leaves F¥* stable. Hence, its continuous
extension, still denoted VE¥, leaves the closure F_ﬁ’+ stable too.

Furthermore, it has been shown in [3] (or [1]) that if the density f is com-
pactly supported, the above ln-concavity assumption implies that the zero set
of VE¥# satisfies {VE2* = 0} ¢ F/% and is made up of (strict) local min-
ima: this relies on the study of the eigenvalues of the Hessian V2E¥(z*) when
VE!(z*) = 0. The extension to a general density functions defined on more
general intervals of the real line is straightforward.

Step 2 (the density f is compactly supported): The obvious problem here is
that E¥ cannot be differentiably defined on R? and, anyway, does not go to
+oo with ||z}|. However a careful reading of the proof shows that the Mountain
pass Lemma admits the following extension:

The Mountain pass Lemma (compact case): Let K C R"™ be the closure
of a nonempty convex open set O (then I%: O). fL:K —RisC!on Io{ ,
VL admits a continuous extension on K satisfying {VL =0} C K and if for
every small enough €>0, (I d-—sVL)(I% )C K , then the conclusion of the regular
theorem still holds.

Step_3 (the general case): The idea is to approximate the density function f by
compactly supported densities that still fulfill the above assumption (£). To this
end, set for every k>1, fi:= —,;-L)l[_k,k) and pg(du) = fr(u)du. One readily

Jore

shows that, at least for large endugh k, fi satisfies assumption (£). Furthermore
one readily checks that fx converges a.s. to f and / u?| fr(u) — f(u)|du — 0 as

k — +o00. General theory on convergence of measures shows that EX* converges
to E# uniformly on compact sets of F#+.

Now assume that E¥ has two strict local minima in F¥*. They lie in
F#+ for large enough k. Subsequently, E#* necessarily has itself two (strict)
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local minima (converging to those of E¥ when k T +00). Step 2 makes this
impossible. o

Remark: A geometrical consequence of the stability property (Id—eV E¥) (_F’;+)
C F’,:’+ is that, on the boundary F%* of F/»*, the vector field —VE¥ is ori-
ented towards the interior of F#7 i.e., for every o€ OF T and every vector @

satisfying (@|z — zg) >0 for every z€ F/»* (there is some due to the convexity
of F%), one has (—VE¥(zo)|@) =0.

A counter-example to uniqueness when assumption (£) fails (see also
[1]): Let p(du) := g(nu— [nu])du where g € C([0,1]) is a probability density
function satisfying g(u) =g(1 — u) ([.] denotes the integral part). (%=1},
is an unstable equilibrium point of VE¥, as soon as ¢g(0) > ;2_% On the other
hand, the existence of a minimum in F!* is granted, so E¥ has at least two
critical n-tuples.

However, note that this only stands as a counter-example to uniqueness of
the equilibrium point in F»*: the set of local minima may still be reduced
to a single n-tuple. It is then necessarily the absolute minimum on the whole
7Z’+ since the absolute minimum cannot lie on the boundary 8F!%* (see [6]).
Simulations plead in favor of such a situation in the above counter-example.

Examples: The above result embodies:

11.—'7':2
e the Normal distributions m(du):= L e 27 du,
ov2m
th distributions for & > 1, B > 0 i.e. u(du)im o2 o0rd
e the y(a, 8)-distributions for a > 1, 8 > 0 i.e. p u).-ﬂaT(a) {u>0}dU,

hence all the Exponential distributions p(du):= )\e‘)‘ul{uzo} du, A>0, and the
x%(k)-distributions whenever k> 2,

e the ((a, b)-distributions whenever a, b>1 i.e. p{du):= %1{03u31}du
(and subsequently the U([0, 1])-distribution for which z*:= (=1}, ;<,),

d
e the logistic distribution given by p(du):= ) (1; Py

e any compactly supported distribution with strictly concave density.

One noticeable fact is that the x?(1)-distribution is not included in that list.
This is somewhat unexpected as this distribution is in some sense “surrounded”
by distribution whose equilibrium is unique: if w ~ AN(0;1), then w? ~ x2(1)
and if wy, wo are independent with x?(1) distribution then wy + ws ~ x%(2).
Actually there is no real doubt that the x?(1) satisfies the uniqueness property
for every n>1.

Applying the usual Robbins-Monro approach for stochastic algorithm, one easily
derives that the VQ algorithm converges toward its unique equilibrium, namely
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Corollary 3 Let p be a probability measure on R whose density f satisfies
assumption (L). Let (X*);en be the adaptative algorithm defined by X°¢ Fi+
and, for everyte N,

Xz't+1 = X'f - Et+lllXi,)~(i+1](wt+1)(X'f - wt+1)’ I<ign.

where (w')ieN is a sequence of independent identically p-distributed stimuli and
(e¢)t>1 is a sequence of (0,1/2)-valued gain parameter such that Y, €4 = +00
and 3,5, €7 < +00. Then there exists a unique n-tuple z* € Fi»+ s.t.

. ¢
E¥(z*) = mings E¥ and X*'"25° z*q.s..

Remark: Following [4] and [2] a stochastic procedure a.s. cannot converge to a
saddle point or a local maximum, so the above corollary will hold as soon as E#
only has a single local minimum. But we do not know any natural assumption
on the density f that would ensure such a property.
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