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Abstract

We present here a set of neural and statistical techniques allowing simple
interpretations of the structure of multidimensional databases. These
techniques concern the estimation of the intrinsic dimension and the
representation through a transformation into a low dimensional space (by
a linear or a non-linear transformation). Two examples are given in the
image analysis domain.

1. Introduction

Data analysis proposes a powerful set of techniques for representation,
discrimination and classification. With neural techniques, we now have non-linear
operators which complete these more classical linear methods in statistical data
analysis. With all these tools and combinations of tools, the choice becomes difficult
for selecting the appropriate technique for a given problem. This is one of the aims of
data analysis, to provide indices and representations allowing a suitable choice of the
processing techniques, by the joint interpretation of the results.

In this paper, we consider the domain of pattern recognition from
multidimensional data. We show how several techniques (fractal geometry [10, 12],
mean distances to the k-nearest neighbours [4, 11], Principal Components Analysis
[4], Self-Organising Features Map [8,9], Curvilinear Component Analysis [3]) can
provide important information on the intrinsic structure of a database. Here, we focus
on the determination of the intrinsic dimension and on the linear or non-linear
relations between the different features in the database.

This paper is divided into three parts. In the following section, we will
briefly describe these different techniques and their interpretation. Then, an illustration
will be given with two databases from an image segmentation application. Finally, a
conclusion will present the perspectives of this work where the collected results must
provide information both on the structure of the multidimensional database and also
on the data generation process.

2. Description of the different techniques
We will describe different methods used to characterise high dimensional

databases, from very simple parameters (such as inertia) to more complex ones (from
non-linear transformations). The description will be illustrated by two examples with
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two databases (database 1 and 2). These databases have been generated from an
application in image analysis where four different objects (classes) in the scene have
been characterised with 16 features for database 1 [5] and with 18 features for database
2 [6]. For both databases, there are 100 samples per class.

2.1 Inertia parameters

Inertia parameters represent very classical and simple parameters in data
analysis of multimodal distributions. These inertia (global, between-class and within-
class inertia) give information on dispersion of the samples and on separability of the
classes. Therefore, these inertia associated with the distances between the centres of
gravity of each class (Fisher's coefficients) can give a very rough idea of the
overlapping between classes [4]. In the the case of simple hyperspheric clusters, these
parameters are well-adapted, but are not adapted to more complex structures (for
example, fig. 1 for a 2D-database).

@

Fig. 1, Examples of clusters with complex shapes.

2.2 -Intrinsic dimension

The intrinsic dimension represents the minimum number of independent
variables underlying the process of data generation. When these intrinsic variables are
linearly transformed to obtain the real database, the Principal Components Analysis
(PCA) provides a powerful technique for dimension reduction. The evolution of the
restored inertia versus the number of output dimensions produces a curve that gives an
idea of the number of linearly correlated dimensions: a breakpoint, more or less sharp,
is present in the curve (see fig. 2a and section 2.3.1).

In {4], Fukunaga has proposed an estimation of the intrinsic dimension as a
local dimension according to an approach which is similar to a local linearisation of a
non-linear data structure. This dimension (d;) for a distribution X is computed from

the evolution of the mean distance between a sample and its kth nearest neighbour,

and the mean distance between a sample and its (k+1)St nearest neighbour (eq. 1).
Other similar techniques have been proposed [7] to iteratively reach the intrinsic
dimension, instead of a rough computation by averaging over several values of k.
Here, we have implemented the Fukunaga's original method and this first estimation
will be compared with other approaches: the fractal dimension, and the relations
between distances with Curvilinear Components Analysis (see section 2.3.2). This
analysis on the two databases gives similar results for an estimated value (d;) of
around 3 or 4 for both.
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This estimation is valid if the distribution X is locally uniform. More
general methods [10] have been proposed based on the concept of the fractal
dimension [12]. We consider here the similarity dimension. A hyper volume A is
stated fractal if A is the union of N(r) non-overlapping copies of itself. Each copy is
similar to A scaled down by a ratio r. The fractal dimension of A (dp is then

d = tim 12BN @
r—0 log(1/ )

In practice, df is the slope of a regression line from the graph log(N(r))
versus log(1/r). This is the "box counting method". This technique gives valid results
if the number of available samples is sufficient. If not, the shape of the graph shows
that the linear regression is not suitable. The range of the variable r , in which the
slope will be estimated, gives the scale of this measure. If the scale is too coarse, the
estimation is not accurate. With a scale too fine, the measure is very sensitive to
noise. This is another argument towards the confrontation of different estimations.
For the two databases, figure 2.b shows the evolution log(N(r)) versus log(1/r). For
database 1, at a median scale, the estimation of the fractal dimension is rather 4
(3.56). We do not consider the measure "1.82" estimated at a resolution too fine. For
database 2, the estimation is rather 3 (2.87).
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Fig. 2. (a) Evolution of the percentage of restored inertia by PCA, (b) Estimation of the
fractal dimension.

2.3 Representation into a low dimensional space

If the input dimension is more than 3, direct representation is visually
inefficient. There exists techniques allowing a dynamic representation by rotation
around 3 axes randomly chosen. Nevertheless here, we consider more classical "static"
techniques through a reduction of dimension into a lower dimensional output space.
Firstly, the information of the intrinsic dimension can help to determine of this
output dimension. Secondly, the application of these techniques can produce new
indices to determine the best output dimension, as will be shown afterwards.
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2.3.1 Lwo well-known representations

By means of Principal Components Analysis (PCAj, an inpul
multidimensional space can be linearly transformed by projection inte an output
subspace from the most significant uncorrelated axes. On the evolution of the
percentage of explained variance after PCA, we can see a different behaviour between
the two databases (fig. 2.a). The input features seem to be more linearly correlated in
database 1 than in database 2. Moreover, 3 or 4 features seem to be sufficient to
restore database 1.

In the domain of artificial neural networks, Kohonen's Selt Organising
Features Map (SOFM) can be viewed as an non-linear extension of PCA [1]. SOFM's
provide a data mapping between the high dimensional input space and a low
dimensional output space [8]. In this mapping, both the number of samples and the
dimension are reduced. When the intrinsic dimension of the data structure is higher
than the dimension of the output map, the obtained organisation will fail to
completely represent the initial structure. However, simple representations can be
realised where the "neurons" are in a two or three dimensional space. Recently, based
on 2D-SOFM, Kraaijveld et al. proposed [9] a new representation from the
organisation on a 2D-map. A grey level is associated with each neuron (like a pixel in
an image) which is proportional to the maximum distance in the SOFM between the
current neuron and its four closest neighbours (E, W, N and S). Then, for a dense
cluster, the associated spatial region will be rather dark. The boundaries between two
different clusters will be enhanced by a whiter area (see examples in fig. 3 left). If the
data are not initially and naturally structured into clusters, the produced image will be
seen as very noisy. But, due to the problem of the possible mismatching between the
dimensions, we can notice that if a cluster is visible in this image then it is really
well separated in the initial space, but the inverse implication is not always true.

Database | Database 2
S ——

Fig. 3. Projection image from 2D-SOFM (50 x 50).
For both databases, the dimension of the output map (2Dj is less than the

intrinsic dimension. So, this mismatching does not allow a clear representation of the
clustering. This is above all true for database 2: nothing can be deduced concerning
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the clustering (fig. 3 right). For database 1, one cluster for class one (top-right) is
clearly visible (fig. 3 left).

2.3.2 A more suitable representation

The major drawback of SOFM is that the projection is realised from a
predetermined shape of the map and from a predetermined structure of neighbourhood.
These a priori configurations act upon the quality of the provided projection because
these initial choices must fit the input data structure (some shape in some
submanifold) which is a priori unknown. To overcome this drawback, Demartines [3]
has proposed a new model called "Curvilinear Component Analysis". The principle is
opposite to SOFM : instead of quantising the input distribution by a map whose
shape and neighbourhood are predefined, the input distribution is first quantised and
then non-linearly transformed into a low dimensional space, where the neurons
themselves "find" themselves their neighbourhood according to the input topology.
The only parameters to be a priori fixed are the number of neurons and the output
dimension. Their locations are free (not constrained by a structure of neighbourhood,
as in SOFM) and are adjusted according to the minimisation of an energy function
(eq. 3). For this purpose, the distance Yj; between two samples i and j evaluated in
the output space must match the associated distance Xjjin the input space. By means
of a weighting function F(Yj;), short ranged distances are favoured to longer ranged
distances. So, it is possible to re-shape a data structure by unfolding it into an output
space of lower dimension (see figure 4 for a simple example).

1
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Ey Fig. 4. CCA network, &; are
Lol j j the synaptic weights from the
o vector quantisation, and yj,
the synaptic weights from the
é. non-linear transformation.
An illustration is given with a
3D non-linearly structured
data-base projected into a 2D
space matching the folded
structure (from [3]).
E o £y Y (from [3])
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The dimension of the output space can be determined from the evaluation of
the intrinsic dimension. Moreover, in the case of the CCA, another feature can help
this determination: the joint distribution of the distances X;; and Yjj, called the X-Y
distribution (fig. 5.d). CCA preserves short range topology, so the X-Y distribution
will be "thin" (X=Y) for short distances X;; and Yj;,. For a long range topology, Xij
and Y;; will not be so well correlated. The evolution of the shape of this distribution
versus the output dimension is another means to roughly estimate the instrinsic
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dimension. As the output dimension increases, the area of the linear regression will
concern longer distances.
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Fig. 5. (a)-(b)-(c)Evolution of the X-Y distribution when the output dimension increases
from 2 to 4, (d) X-Y distribution obtained from distances between the 400 samples of
database 2. The output dimension is 4.

In figures 5a-b-c, this distribution has been plotted for 3 different output
dimensions (2, 3 and 4). To be clear, the representation of the distribution has been
simplified : the "Distance out" (Y) axis has been split into 20 bins. In each bin, the
means of X;; and ¥;; are plotted and are associated to the standard deviation of Xjj. To
simplify the graphics, only 7 bars of standard deviation have been drawn.

For database 1, we observe a mean X-Y distribution close to the bisecting
line. This is true from the output dimension equal to 3. Moreover, the standard
deviations decrease when the output dimension increases : the joint distribution X-Y
becomes "thinner". These results confirm the interpretation of PCA. The 16 features
of database 1 are linearly generated from very few independent features (around 3). For
database 2, the situation is more complex. The X-Y distribution shows a growing
evolution with a saturation effect of for the longer distances. This means that CCA
has non-linearly re-shaped the input database 2 and thus a perfect preservation of
topology is not realised for longer distances. This effect is even more visible when
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the output dimension is small compared to the intrinsic dimension. In figures 5a-b-c,
we observe that the distribution X-Y for database 2 changes towards the bisecting
line, and also the standard deviation decreases when the output dimension increases.
The quality of the output representation doesn't significantly change with an output
dimension greater than 4. For database 2, the 18 features are non-linearly generated
from around 4 independent features. '

3. Recapitulation of the results

With these two databases, two very different data structures have been
observed. Both databases can be reduced with 3 or 4 intrinsic independent parameters.
Database 1 is linearly structured from these parameters and database 2 is non-linearly
structured.

Database 1 Database 2

-2
Axis 2 Axis 1

Fig. 6. Non linear transformation by CCA into an output 3D-subspace

15 Axis 2 -3 3

In database 1, class 1 ('.") and class 2 ('+') are well clustered (see SOFM
analysis in figure 3 left). For database 2, the clusters are less dense and seem to be
closer. Here, while the databases contain few samples (400), CCA was implemented
without the vector quantisation stage. It is interesting to have information about the
intrinsic dimension. Then, there still remains the problem of performing the suitable
data transformation into the intrinsic space. CCA is a candidate for this
transformation.

4. Conclusions

This set of techniques is not exhaustive but represents coherent set for a first
step in data analysis. From these results, different levels of interpretation can be
performed at the level of the data structures and at the level of the data generation
process. Here, we have only discussed the first level, and in particular the estimation
of the intrinsic dimension and the linearity or the non-linearity of the database
structure. We have shown how different measures (fractal geometry, distances from
the K-nearest neighbours) can allow us to estimate this dimension and how PCA and
CCA can give features for this calculation. On the one hand, the use of the evolution
of the restored inertia after a PCA is very classical ; on the other hand, the use of
information from the X-Y distribution with CCA is more original and useful. The
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confrontation of linear and non-linear methods in data analysis is very informative for
the interpretation of the databases structure.

With thes reduction dimension techniques, the input databases are
transformed into a subspace with 2 or 3 dimensions, then the direct representation can
provide information on the clustering. But, the interpretations must be done knowing
a possible mismatching between the resulting dimension and the intrinsic dimension.
An alternative representation based on the distances between input samples, can be
built by hierarchical classification [11]. These techniques are interesting because the
representation is realised in the original input multidimensional space (there is no
distortion due to a space transformation). This group of methods produce dendrograms
where at each level, samples are agglomerated to form clusters according to the rules
of the smaller distances between the clusters.

The perspective of this work is to continue reserach into the interpretation of
the data structure to better formalise the link between the data structure and the choice
and configuration of the processing techniques particularly in the case of unsupervised
and supervised learning.
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