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Abstract In this paper, we describe a random neural network model (RNNM) with positive
and negative neurons which can efficiently behave like an auto-associative memory with
two layers. We use the Hebb rule to compute the connection weights. To exploit the
RNNM, it is necessary to know the values of the positive flow and negative flow rates
entering each neuron from the outside of the network. We present here a new learning
algorithm for choosing these parameters which ensure good performances for pattern
recognition and pattern reconstruction.

1. Introduction

We take again the random neural network model studied in [2,3]. A neuron
can emit positive signals and negative signals to its neighbours or to the outside of
the network. It also can be positive or negative. There is accumulation of positive
signals (respectively negative signals) at positive neurons (respectively negative
neurons). Let k(t) be the vector of neuron potentials at time t and k=(kq,....k) a
particular value of k(t). Following [1], if all the steady state excitation probabilities gj
are such that 0<qgj<1, the stationary probability distribution of the network's state is
expressed by : p(k)= Hni=1(1-qi)qiki. Let us define :

P (respectively N) : the set of positive (respectively negative) neurons

A(Q) (respectively A(i)): the external arrival rate of positive (respectively negative)
signals to i

p¥(,i) (respectively p=(j,i)) : the probability that the positive neuron j emits a
positive (respectively negative) signal to neuron i

pt(.i) (respectively p=(j,i)) : the probability that the negative neuron j emits a
negative (respectively positive) signal to neuron i

r(i): the emission rate of signals by neuron i.

For a two layers network, the X pattern application to the network
characterizes the input neurons as positive or negative :

if X;= 1thenie P, A(})#0and A(3) =0

ifX;=-1thenie N, AG)#0and AGl) =0
the corresponding output neurons have respectively the same sign.
The g are computed from the following equation system :
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Input layer : q?—% ifie P and q?:%((ii—)) ifie N
AD+ Y, ¢ @ p G+ Y, a5 1G) p G
je P jeN
OutputLayer: q;= ! 5 - : 5 " ifie P
i) + 2 g5 1) p ) + X, g 1) p G
jeP jeN
A + Y a1 p G + Y, af 1G) pGid)
je P jeN
and q; = : 5 - i 5 - ifie N
M)+ X, 45 1) p G+ X g 1G) p GiD)
je P jeN
Thus, for each output neuron i, we will have (1):
AD+ Y, AD PG+ X A PG
jeP jeN N; .
gi = - " =B ifieP
)+ Y, AGPGD + X MppGH
jeP jeN
M)+ AD PG + X A G
V jeP jeN N; ..
and q;= " - =D ifie N
M+ Y, AQPGED+ Y AMDpGD
jeP jeN

with ptG,j) = Wij /(i) if Wij>0 , p ()= lwijl /(i) if Wij<0
and r(d) = Zj Iwijl, where wjj are computed by the Hebb rule.

2. The Gradient Method Principle

As in general learning from noisy inputs gives better results for recognition,
(noise addition avoid finding a particular solution for the vectors A and A, which
depends on the learning set), it seems interesting to apply it to our model. Thus, the
problem is to choose A and A such that we obtain the desired output, meaning that for
each output neuron i : q; ~ 0 if the component Xi is corrupted and q; ~ 1if Xi is
correct. We use the gradient descent method to minimize the quadratic error cost
function E : E = (1/2) Zni =10 - yi)2 where y; € [0, 1] is the desired output at
neurone i. The rule for A and A update may be written as (2) :

AQu) = A(u) - JE/DA®) and A(u) = A(u) - N OE/OA(u)
with  JE/@A(m) =X _ 1 (q; - yp) [0q;/0A(w)]
and JdE/dA(u) = Zni =1 (qj - yp [0g;/0M(w)] where T is some constant.
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In order to compute dq;/0A(u) and dg;/0A(u) we turn to the expression (1) from which

we derive the following equations (3) :
ifie N

X u jeP jeN M) jeP jeN

i

N D2

1

IN¢ AG) - Do+ + i) -
RO | 5 280 i+ 3 20 —qi(Z AW i+ Y, 20 p(i,i))
J

a;i—) A+ Y, AP D) + XA (i)p*@,i)] DN = ¥ agpei+ 3 xmp“(i,i)l

MW e p W) JeNA@ e ) JeNA@

D.

1

flu=i] + l[u ¢i} I[ue N]p+(u,i) - q I[u ;ti] I{ue N] p (i)
D;

with a similar calculus, we obtain :

dg; _ I[u ;ti] l[u € P] pWwi)- g I[u ;ti] I[u € P] p (u,d
AA) D; '

IfieP

oq; _ Hu=1i + l[u ¢i] I[u € P]p+(u,i) - q I{u ;ti] I[u € P] p (1,1
IA) D;

aq; I[u ¢i] 'l[ue N]p_(u,i) - qil[u;ti] I[ue N] p+(u,i)
Mw) D;

The learning algorithm for choosing the set of A(i) and A(i) is the following :

1- Initialize each components of A (respectively A) at random values between Ay, iy

and Ap a4y (respectively Apip and Ay ay) where Apyip and Apay (respectively Apin
and Ay 4x) are computed by a heuristic given in [7]

2- Give as new input the vector X = (X1, ..., X)y) and its desired output y = (yq,
.YN) (where N is the input neuron number and the output neuron number)

3- Code each X components as :
ifXj=1thenie P, A@)#0and Mi) =0elseie N, A{)#0and A) =0

4- Compute the solution g from (1)

5- For each output neuron i compute dE/dA(i) and JE/A(1) with (3)

39



ESANN'1996 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 24-25-26 April 1996, D-Facto public., ISBN 2-9600049-6-5, pp. 37-42

6- Update the arrival rates A and A with (2):

7- Go to 2 while not convergence.

Different recall methods have been proposed in [3, 4, 6, 7]. We present here
the best one. The bipolar output Y is produced as following : for each output neuron i,
if gj o then Y;=X; else Yj=-X;. Let us note 0, as the minimum of the output g; for
all the stored patterns. The most efficient threshold o for the X pattern recognition is
the one which generates a bipolar output Y from Q_(X) such that when reinjecting Y to
the network we have qi(Y) 2 ol for each output neuron i. This method asserts the
recognition of all the stored patterns. If we can not find such a threshold o, so X is
still noisy. The corrupted components correspond to low q; values (inhibited neurons).
Then, the components whose q; value is minimal are certainly corrupted. So, we start
to correct these errors by this threshold function: if g;=ming then Y;=-Xj else Y;=X;,
where minq is the minimal g; value. We reinject this output Y to the system which
then becomes a new input X. After computing qj, if g;200 for 1<i<n, then X is

corrected. If not, we correct again certain components of X as before, etc.. We stop X
injection when the reinjection number is larger than n by the maximal supposed noise
rate, because at worst there is only 1 correction per pass. Then, X will be the closest
version of the stored pattern.

3. Experimental Results

We have stored from 1 to 16 random examples of 100 components each one.
A component is equal to +1 or -1 with a probability 0.5. For each of them, 100 noisy
examples have been generated with a d % noise rate. We have repeated the experience
10 times and the recognition performances are results of an average. Figure 1 gives the
results.
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Fig. 1. Recognition rate of random patterns, where m is the number of stored
patterns and d the noise rate
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On the other hand, we have computed the minimal reinjection number of the
pattern necessary for its exact reconstruction. Figure 2 gives us the number of the
iterations with respect to the number m of stored patterns and the noise rate d .
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Fig. 2. Average number of iterations, where m is the number of stored patterns and d is the
noise rate

4. Capacity

We define the capacity of an auto-associative memory as the maximum
number of patterns that can be stored and subsequently retrieved at a given level of
fidelity. For our model, we see that the stored patterns are always recalled without
error, whateven their number m. That is because we have requiered a guarantee that
retrieval of stored patterns be successful by choosing a threshold less than or equal to
o). However, it is obvious that for a high number m, the patterns will not be
reconstructed even with small noise. So, for the RNNM, we are interested by the
maximal number of stored patterns such that no one deformation can be corrected.
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Fig. 3. Comparison between the RNNM Capacity and the Hopfield model Capacity,
with respect to the neuron number n
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Another manner to evaluate the capacity of the RNNM is to determine the
maximal number of stored patterns such that the noisy examples with a small noise
rate (for example only one corrupted component) are all reconstructed. Figure 3 gives
this RNNM capacity and the one of the Hopfield model (m ~ 0.14 n).

5. Conclusion

Various modifications and refinements of our learning algorithm are worth
investigating. In experiments which are not reported in the paper, we show that the
RNNM provides substantially better results than Hopfield model if the stored patterns
don't satisfy the Hebb rule. Finally, we can obtain better minimization and so better
recognition performances if we consider that a neuron can receive at the same time
positive signals and negative signals from the outside of the network.
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