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Abstract. In this paper we explore the effect that a negative initial weight dis-
tribution has on the learning time and learning quality of recurrent neural net-
works. We shortly introduce the recurrent models used in this research and then
we present some experimental results which suggest a dependency of the learn-
ing phase with the initial mean of the weight distribution; a frequency domain
analysis follows which gives us an idea of the initial weight influence on the
frequential characteristics of the temporal sequences generated by recurrent net-
works. We finally offer a statistical analysis of the neural transformation to show
that a negative mean inital weight distribution has, indeed, a positive impact on
the network behaviour.

1 Introduction

Recurrent neural networks have shown a capability to exhibit complex dynamical be-
haviour: fixed point or non-autonomous non-converging dynamics; networks in these
latter group have time varying inputs and/or outputs and are more appropriate for adap-
tative temporal processing such as signal processing or control.

Although, recurrent networks can frequently outperform static networks, they are
significantly more difficult and expensive to train. Their learning algorithms usually
compute repeatedly the gradient of a cost function with respect to the adaptative param-
eters of the neural model which tends to be computationally very expensive; moreover,
the learning algorithms do not guarantee a global minimum and the system may easily
settle in sub-optimal solutions [1]. Techniques to improve learning speed and learn-
ing quality are therefore a common field of research in the artificial (recurrent) neural
network community.

The technique of weight initialization inspired by Rumelhart et al [7] states that
initial weights of exactly zero cannot be used since symmetries in the environment are
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not sufficient to break the symmetries of the initial weights. Since the publication of
their article, the convention on the field has been to initialize weights with an uniform
distribution between —a and a with @ < 0.5. Kolen and Pollack have latter remarqued
the sensitivity that backpropagation has to the initial conditions to which it is subjected
and experimented this by varying the parameter a over a certain range (from 0.1 to
10.0) [5].

In this paper, we show that a slightly negative mean of the initial weight distribution
may have a very good influence on the learning speed and quality of recurrent neural
networks (independently of the type of initial weight distribution or learning algorithm).
This fact was also noticed by Bush et al. [2] in recent experimental and biophysical net-
work. They state that the role of cortical inhibition is more complex than only to oppose
excitation; for example, it was suggested that the role of inhibition is to synchronize the
firing of groups of pyramidal cells and that excitation and inhibition assume a synergis-
tic action to shape the optimal response of a cortical neuron to a specific stimuli.

2 Recurrent Network Models

We consider recurrent networks governed by the following equations:

du:
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where y; is the state or activation level of unit ¢; F(a) is the squashing function defined
between —1.0 and +1.0; I; is the bias and z; is the total or effective input of the neuron.
We have considered continuous time networks and have associated to each neuron an
adaptative time constant T;. The error function is defined as a functional:

t1
E= ] q(y@)t)-dt @
to
where tg and ¢; define the temporal interval during which the learning process occurs.
To train networks governed by equations (1) to (3), we use either the Real-Time Recur-
rent Learning algorithm presented by Williams and Zipser [8] or the Time-Dependent
Recurrent Backpropagation algorithm derived by Pearlmutter [6].

3 Experimental Results
We present here, from a series of experiments we conducted, a typical application which

uses a fully connected dynamic recurrent network with the time dependent recurrent
backpropagation learning algorithm to show that, indeed, there might be a dependency
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Figure 1: On the left, learning curves 1, 2 and 3 for the first 400 iterates of the Mackey-
Glass series with a initial weight mean of 4-1.0, 0.0 and —1.0 respectively. On the right,
characterization fo the frequential behaviour of the network spectral analysis. Curves 1,
2, 3, 4 and 5 represent uniform weight distributions of [—20, —10], [-1, 0], [—0.5, 4+-0.5],
[0, +1] and [+10, +20] respectively.

of the learning process with the initial mean of the weight distribution. We then consider
a different learning algorithm, real-time recurrent learning, and two different types of
initial weight distributions, uniform and gaussian, to see if the dependency is algorithm
and/or weight distribution dependent. Finally we observe the network power spectra
with different initial weight-distributions.

The curves on the left graph of figure 1 correspond to the average epochs vs. to-
tal error curve, over 10 runs of the learning process for the prediction of the first 400
iterates of the Mackey-Glass series with a 20 neuron network [4]. Each curve corre-
sponds to a Gaussian initial weight distribution with means of: +1, 0 and —1 with a
standard deviation of 1 in all three cases: 1, 2 and 3 respectively. Note that the best
learning curve, 3, which corresponds to the —1 average initial weight distribution, is
far below the two other cases during and at the end of the learning process. All other
experiences we tried with these particular type of networks gave the same type of result
strongly suggesting that there is a benefic influence of a small negative mean distribu-
tion of weights on the learning phase of recurrent network. Further experimental essays
suggest that this influence is independent of the type of learning algorithm and initial
weight distribution.

The graph on the right of figure 1 is one of the various similar results we obtained
on frequency domain for different network sizes. It shows five power spectra curves
of a 10 neuron recurrent network. Each curve corresponds to uniform weight distribu-
tions of: [—20, —10}, [-1,0], [-0.5,+0.5], [0, +1] and [+10, 4+20] (curves 1, 2, 3, 4
and 5 respectively) and is an average of 10 runs in each case. No learning took place.
The power spectrum of the output node was computed using a 512-point fast Fourier
transform where the maximum detectable period equals 256. Note that in all five cases,
the mean amplitude of the frequency response decreases as the weight mean value be-
comes more positive. This shows that a negative weight mean value allows a recurrent
network to exhibit a richer dynamical behaviour whereas a positive weight distribution
mean will drive the network quickly to the saturation zones of the sigmoid.
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4 Statistical Analysis of the Neural Transformation

To quantify theoretically the effects described in the previous sections, we develop an
analytical model that gives the evolution of a macroscopic state variable of the network
versus time. This allows to consider the impact of the weight mean value on the evolu-
tion of the network mean activity level A, which will be defined as the mean value of
the neurons' activations.

We consider a totally random network where the weights w;; are the realization
of independent random variables subject to a gaussian distribution N (i, g,,). We can
now determine the distribution of the variables z; from equation (3). These variables
are independently, identically and normally distributed with:

z = FE ijiyj =Zyju7=nu7Ay 4)
J J

g = o [Z wjz‘ya] = yjo?[ws] = nol A (6)
7 j

where A, = 1/n '} y; is the mean activity of the network and A2 = 1/n ) y? is the
mean power of the network.

We can now determine the distribution of the variables y;. We will use equation (7)
which is the discretized version of equation (1) (see [3]) with a proper time step At.
Note that here we will limit our study to the effect of the weight distribution and there-
fore, the time constants T; will be set to 1.0 and remain unchanged.):

yi(t + At) = (1 - At)yi(t) + AtF(xi(t)) M
The density function fsigmoid of the variables F'(z;), since the distribution of x is
given by N(Z, 0;), can be calculated:

2
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This density function can be approximated by a Gaussian distribution with:
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These results give the distribution of the last term of equation (7). If we replace
equations (5) and (6) into (9) and (10) and if we use these parameters in equation (7),
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Figure 2: Left, evolution of the mean activity of a 200 neuron network (A, =
1/200 Z,‘ y;). The weights have Gaussian distributions with mean vaules ranging from
—0.4 to +0.4 and a standard deviation of +1. Right, Activity of a single recurrent neuron:
bottom, stimulation pulse; middle, response of a neuron with negative weights; top, re-
ponse of a neuron with positive weights; for clarity purposes, all three cases have been
scaled to a 0 to 1 range and the two outputs have been shifted.

we can approximate the mean activity of the network, A,, versus time':

1—exp!

nwA,(t) + 1) an

This equation gives the temporal evolution of A, as a function of the mean value of
the weights w and the number of neurons n. Figure 2 (left) shows the evolution of the
macroscopic variable A, versus time for a 200 neuron network. Ten different values
of @ are shown in the figure: 0.4, 0.3, 0.2, 0.1, 0.01, -0.01, -0.1, —0.2, —-0.3, —0.4.
These curves prove that positive weight mean values drive the network towards the sat-
uration zone whereas negative values keep A, at an acceptable level. This effect can be
observed also in figure 2 (right) which shows the evolution of a single recurrent neu-
ron vs time when stimulated with a pulse; the neuron has an external input, a recurrent
connection, an activation level of 0 at ¢ = 0 and a sigmoid activation function (range
[—1.0 : 1.0]); the botom curve is the stimulus (input) to the neuron; the middle curve
is the response of the neuron (with offset +2) when its two weights are set to —1 and
the top curve (offset +3) is the response of the neuron with its weights equal to 1. Note
how the neuron quickly saturates when the weights are positive whereas it presents a
complex behaviour around the zero axis when the weights are negative.

5 Conclusion

We have explored an innovative way to improve the learning process in recurrent net-
works by studying the effects of initial weights selection. By ajusting the mean of the

1This equation was developed further to take into account the saturation effect (which was lost in the
approximation) of the sigmoid (see [3])
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initial weights to a slightly negative value, important improvements in quality and per-
formance were obtained. This fact became significant when various different cases of
recurrent networks were tried with the same general results.

By looking at random networks' power spectra, we see that inhibitory weights in-
crease the dynamics of the network but results indicate that too negative values will
increase learning time to a point that training would be unfeasible. Looking at random
networks' mean activity we see that a positive weight-mean value would quickly satu-
rate the network whereas negative weight-means will keep the network away from the
cliping zones of the activation function; the statistical model we developed correctly
predicted the mean activity of networks with different sizes and different weight distri-
butions.

We therefore conclude by saying that a negative initial weight mean has a good
influence on the speed and quality of learning. We highlighted the fact that this influence
is independent of the learning algorithm and of the initial weight distribution type. This
paper provides an easy addition to the classical analytical acceleration techniques used
for learning in recurrent networks.
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