ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

Extended Bayesian Learning

Steffen Gutjahr, Christian Nautze

University of Karlsruhe
Institute of Logic, Complexity and Deduction Systems
Am Fasanengarten 5, 76128 Karlsruhe
Email: {gutjahr,nautze}@ira.uka.de

Abstract. In Bayesian learning one represents the relative degree of
believe in different values of the weight vector - including biases - by con-
sidering a probability distribution function over weight space. In general,
this a priori probability is expected to come from a Gaussian with zero
mean and flexible variance which is callded a hyperparameter. It can
be optimized automatically during training by maximizing the evidence.
The extended Bayesian learning (EBL) approach consists of consider-
ing a more general form of priors by using several weight classes and by
considering the mean of the Gaussian distribution to be another hyper-
parameter. We propose an algorithm which determines automatically
the optimal number of different weight classes and where the weights can
change from one class to another. Our approach is applied in several
benchmark problems and outperforms simple Bayesian learning as well
as other optimization strategies.

1. Introduction

We begin by considering the problem of training a network in which the ar-
chitecture is given. The task of learning a neural network is to find a set of
connections w that minimizes a pre-defined error function. In the conventional
maximum likelihood approach the mean squared error is used. In the Bayesian
framework, however, we consider a probability distribution over weight values.

In the following we will give a brief introduction of the Bayesian learning
of neural networks. Apart from the likelihood function we also introduce the
new prior probability.

1.1. The Likelihood

The training set for the mapping to be learned is a set of N input-target pairs
D = {&™,t™}. We assume that the target data is generated from a function
with additive Gaussian noise, so that the probability of observing ™ would be

p(E™|a™, 5, B) o exp(~ 5 {u(e™;) ~ 17}?)

where y{iz; @) represents the network function with weight vector & and %
is the presumed noise in the data.

321

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

Provided the data points are drawn independently, the probability of the
data, called the likelihood is

N
P(Dlw,B) = H P(t"[™, @) = (ﬂ exp(— E{y ™@) =) (1)

where Zp (8) = (2’r)M/2 is the normalizing constant. The data error Ep (%) =

3 YN {y(e™; %) — t™}? is used to express the likelihood function. Here
P(D]...) denotes the probability of the target. The input is part of the condition
and is suppressed in the notation.

1.2. The Prior Probability

Up to now the prior was based on the believe that positive and negative weights
are equally frequent and that smaller weights are more likely to occur than
larger ones. In this context the Gaussian prior with zero mean is a natural
description of such a compact distribution. For a general survey see [Tho93]
and [Mac92].

Neural networks are often used when the relation between input vector
and target is highly nonlinear. When using sigmoid activation functions large
weights are needed to detect the nonlinearity in the data. Therefore it seems
reasonable to drop down the assumption that larger weights are more unlikely
than smaller ones. We rather believe that there must exist several large weights
to adequately build up the given data.

Our approach consists of changing the a priori probability by keeping vari-
able the mean of the Gaussian distribution and to consider it as a hyper-
parameter. Additionally, we split the W adjustable parameters @ into G
groups W = {W,lg = 1,...,G} with W, weights in group W,. By denot-
ing @ = (o1, 02,...,06)T and p = (g1, p2, - .., pc)T the prioi is of the form

exp(— Z Z (w — ng)? @)

g=1 wEW,

Pl) =

The hyperparameter oy is in fact the rec1proque of the standard deviation
of the Gaussian of W;. The term Ew, (@) = 5 ZwEWg(w — ug)? is a new
form of regularization term centered at the nonzero point pg. Setting pg, =
0 Vg yields to the well known weight decay. The normalization coefficient is

Wo/2
ZW(O-‘) = Hg (%)
1.3. The A Posteriori Probability

Inserting (1) and (2) into the Bayes’ rule we get the posterior weight distribu-
tion

G
P(|D, B, o, p) = exp{—PEp — Y ogEw,} (3)

g=1

Z(ﬁ,)

322

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

where Zyr(a, 8, p) is the normalizing constant. In order to maximize the a
posteriori probability we have to minimize the exponent. This is learning in the
mean square error sense using a generalized version of weight decay terms.The
minimization of the error function is carried out with the RPROP learning
algorithm [RB93].

2. A Generalization of the Evidence

Up to now we developed the algorithm for optimizing the weights given the
values of a, ¢ and f, which we call hyperparameters. The advantage of the
Bayesian approach of learning is that the hyperparameters can be evaluated
automatically. This is done by optimizing the evidence for (8, a,) which can

be written as Zm(a, B, 1)
)= Ml fBp)
P(D|B,a,p) = Zw(@)Zp(8)”

For an excellent review see [Bis96]. We already evaluated Zw (o) and Zp(B) .
The evaluation of Zys is much more difficult analytically. Therefore we suggest
that we trained the neural network to its most probable weight value wWasp with
fixed hyperparameters. If we make a Gaussian approximation for the posterior
distribution of the weights around Wy p we get an approximation of the form

G

Zum (B, a, 1) ~ exp{—BEp (Gmp) —) agBw,(Bup)}(2m)/?|| 4]~/
g=1

where A = BVVEp(Wmp) +), agly is the Hessian matrix of the total error
function evaluated at @ p. Note that A does not depend on u. Iy is a matrix
whose elements are all zero, except for some elements on the leading diagonal
Irr. where 1 corresponds to the weight from group Wi. We finally compute the
iog of the evidence to be

G

- — 1
log P(D|B,,y1) = —PBEp(Bmp) =) agEw,(Gup)— 3 log]lA]l
g=1
W, N N
+ ; 5 logag + - log 8 — > log(2r). (4)

We consider the problem of finding the maximum with respect to the hyperpa-
rameters. This is done by differentiating (4) and setting the resulting equations
to zero.

We briefly describe the algorithm of finding the maximum with respect to
o and 3.

By using VT AV = D with V = (vy,...,vw) be the orthogonal matrix of
the eigenvectors of A and D = diag (A1, -- -, Aw) be the matrix of the eigen-
values of A we can show that 2 log||4|| = Trace{A~!,Z A}. Straightforward
calculations yield for the following conditions which have to be satisfied when

323

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

the log evidence is maximized with respect to 8 and oy.
2BEp(Bmp) =N — 5 2a9Ew,(BmP) =g (5)

A —
where v =3 v, and 7, = Zj{ﬁ—;gi(VTIgV)jj}.
Additionally, in our approach we have to maximize the evidence with respect
to pg.

4] e) ’ t
+—P{D|8,a, =ag—Fw, (0T = - =0
5 P (D18, 19) = g5 =B, (T) agwEZvjvg(w g)

So the best value for y is the mean of the weights of the corresponding weight
group, meaning

Hg = 75 w (6)

The Hessian A is calculated exactly as in [Bis93] and the resulting matrix is
used to determine the eigenvectors V and the eigenvalues A;, see also [PFTV88].

3. Optimization of the Weight Classes

So far we considered the membership of each weight to its weight group as fixed.
This means that one has to determine the number and the weight components
of the weight decay terms in advance which may be not optimal. For solving this
problem we invented an algorithm that automatically determines the number
of useful Gaussian priors and their members.

By fixing the hyperparameters ag and pg,9 = 1,. .., G we define G different
prior probabilities. The weight vector is set to his optimal value Wy p depend-
ing of-those priors. The main idea is that the value of the weight component
is interpreted as the probability of membership to the current weight groups.
If this probability is higher for another weight group than the actual weight
group, the weight changes into this one.

Figure 1 clarifies the situation by considering 3 different Gaussian priors.
We can see that W, is near the classical weight decay, meaning that y, is near
zero. W, prefers positive weights whereas W3 prefers negative ones. Weight w
is assumed to be a member of W; but has a very high value. It would be much
more probable in this case to be a member of weight group W». This can be
done by simply changing the weight group and train the neural network with
this changed a priori distribution. In the course of the algorithm the number
of priors reduces when several weight groups get empty. By this the optimal
number of weight groups is found automatically.

4. Simulations
The weight groups were formed by putting all weights exiting from the same

input in one group, all weights from hidden to output units in one group and
all biases in one group. The training process consists of the following steps:

324

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

W
weight
we - €
V‘q change v “é

Figure 1: Weight change algorithm. After learning the weight w changes from
 weight class Wy to weight class Wa because the prior 1s more likely with regard
tow. :

1. Initialize oy with some small starting value. Set p; = 0 and § = 1 and
determine the weights according to their prior distribution.

2. Train the network for some epochs by maximizing (3).
3. Update parameters oy, y, and 3 using (5) and (6)

4. IF the hyperparameters have not converged GOTO 2
ELSE make a weight change -

5. IF no weight change their group STOP algorithm
ELSE GOTO 2
Negative Eigenvalues were omitted while updating the parameters, see [Bis96].
If there is a group Wy with all A; <0, then ag = Wy /(3 ey, ©°)-

5. Results

We test the framework on two problems. The first task is the speaker indepen-
dent recognition of 11 vowels. [Rob89]) did a comparative study of different
classifiers where the nearest neighbour was best with a hit rate of 56 %.

We take 528 pattern for training and 462 test patterns, no validation data
is used. The fully connected network topology consists of 10 input units, 3
hidden units and 11 output units. By using classical Bayesian learning we get
a hit rate of 52.3 %. This is slightly better than the feedforward network in
[Rob89]) but does not outperform the nearest neighbour classifier. The EBL
approach yields a hit rate of 58.5 %. This is better than the best result of
[Rob89]) and is an improvement to classical Bayesian learning of more than 6
%.

325

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 321-326

The next table shows the distribution of the weights. Finally we get 2
weight groups. W; consists of almost 95 % of the parameters and the mean
is close to zero. However the 12 weights in group W, have a very small mean
value of -1186.75 and the variance is immense, i.e. ay is near zero.

Wy Yo Ew, ag Ly
g=1| 217 162.826 3575.65 0.0227688 | -0.314492
g=2 | 12 { 0.0229098 | 9.15892e+07 | 1.25068e-10 | -1186.75

This is a typical result of our EBL approach. We end up in two or three
different weight groups where one of them represents the classical weight decay
group, meaning the mean is near zero. Generally more than 75 % of the weights
are included in this group. The remaining groups comprise very big weights
which obviously represent the nonlinearity of the problem. The algorithm shows
stable results, i.e. by using different initial weights the resulting neural network

perform quite similar and the performance is crucially better than comparable

approaches. :

The second task is the classification of thyroid disease with 3772 training
and 3428 test patterns. Every pattern comprise 21 continues inputs and 3 bi-
nary targets.

MLP | BL. - MLP | EBL - MLP

hit rate (training) { 100.0 99.9 100.0

hit rate (testing) 98.1 98.9 99.2
Wy Ya Ew, g Hg
g=1 5 | 5.0077e-06 | 1.20123e+08 | 2.0844e-14 -4327.38
g=2| 36 7.35848 322327 | 1.14146e-05 16.2066
1g=3| 87 1.53297 0.135045 5.67576 | 0.0109744

References

[Bis93] Christopher M. Bishop. Exact calculation of the hessian matrix for the
multilayer perceptron. Neural Computation, 4(4):494-501, 1993.

[Bis96] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford
University Press, 1996.

[Mac92] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415-
417, 1992.

[PFTV8&8] William H. Press, Brian P. FLannery, Saul A. Teukolsky, and William T.
Vetteriling. Numerical Recipes in C. The Art of Scientific Computing.
University Press, Cambridge, 1988.

[RB93] Martin Riedmiller and Heinrich Braun. A direct adaptiv method for faster
backpropagation learning: The RPROP algorithm. In Proceedings of the
IEEE International Conference on Neural Networks, 1993.

[Rob89] A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis, Cam-
bridge University Engineering Department, 1989.

[Tho93] H. H. Thodberg. Ace of bayes: application of neural networks with prun-
ing. Technical Report 1132E, The Danish Meat Research Institut, 1993.

326

