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Abstract

Behavior of chaotic systems cannot be exactly forecast for all state
variables by identified models since inaccuracies of model parameters lead
to exponential forecast errors. However, under certain conditions a model
can be identified that possesses the same strange attractor. This can
be reached by using an error measure based on error volume evaluation,
instead of additive squared error. In this way, the forecast horizon can be
substantially extended.

1 | Introduction

The behavior of chaotic systems cannot be exactly forecast by identified models
since a deviation in model parameters leads to exponential forecast error (see,
e.g. Nicolis and Prigogine [4]). This results from the fact that a small deviation
in the initial state Zo of a chaotic system leads to an exponentially growing
deviation in the state Z; for ¢ — oo. A small deviation in model parameters
leads, for an identical initial state, to a small deviation in the state Z; and has
thus the same consequences as a small deviation in the initial state.

However, dissipative systems are not completely unpredictable. By their defi-
nition, for dissipative systems, the volume enclosing a family of trajectories in
the state space shrinks with time (e.g., Schuster [5]). As a consequence, even a
chaotic dissipative system is attracted into a region of dimension smaller than
the complete state space, into the so called strange attractor. This attractor
is typically a set that is “thin” in some directions and “thick” in others. This
property of dissipative systems makes a certain forecast of the system behav-
ior possible. We cannot know where the system is exactly, but we can try to
(A) identify the attractor, that is, look for a model whose attractor has similar
topology to that of the real system, and (B) determine the position along “thin”,
predictadle dimensions. Since practically all technical, and many natural, sys-
tems are dissipative, solving this problem would mean a substantial shift of our
ability to forecast the behavior of nonlinear systems.
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The present work shows a possibility to address this problem with neural net-
works, using an appropriate error criterion for learning agorithm.

2 Problems with conventional least squares

To formalize the identification problem, let us denote the mapping representing
the system (in the state space representation) as

Ziy1 = f(Zt, ut) (1)

with z; being the system state and u; the input into the system at time ¢. This
mapping corresponds to the neural network (or, generally, any mathematical
model) by which the system is identified.

The identification task can be formulated as looking for the model which min-
imizes the deviation between the model forecast for the i-th state variable z;
and measurement from the real system d;. Usual approach is to take square
deviations of single-step forecasts and sum them up over all state variables

> (z—di)? (2)

i

This criterion is used in classical (e.g., Astrém and Wittenmark (1]} and neural
(e.g., Nguyen and Widrow [3], Werbos [6]) system identification.

Minimizing (2) is a successful approach to linear system identification. For non-
linear chaotic systems, the problem with all additive least squares criteria is that
the inherently necessary error (given by the unpredictability of the exact position
within the strange attractor) in dimensions where the attractor is “thick” may
prevent minimization of the error in other, “thin”, dimensions. The reason for
this is that even the smallest, casual improvement along the former dimension
(caused, e.g. by a minor local adaptation to the concrete measurements) may
be numerically larger than a substantial improvement along the latter. This
suggests the use of nonadditive minimizing criteria.

3 Error volume criterion

Dissipative systems are characterized by the contraction of initially n-dimensional
phase space to a (possibly chaotic) attractor of dimension lower than n. The
intuition behind the following developments is that although the forecast error
cannot be reduced down to zero, it can be reduced to fill a volume of dimension
lower than n.

This is why an optimization criterion appropriate for identifying chaotic dissi-
pative systems must have “volume-like” properties. A large deviation in one
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direction can be offset by a small deviation in another direction, in a multiplica-
tive way. Furthermore, these directions need not coincide with individual state
variables - “flat” dimension of a strange attractor may be oriented arbitrarily.
This excludes the use of a simple multiplicative criterion of the form [[;(2; —d;)?.

The most appropriate volume measure is the determinant of the matrix of errors
zij — dij, 4,j = 1,...,n of n multi-step forecasts of system trajectories with
slightly perturbed 1n1t1al conditions, with ¢ belng the state variable index and j
the perturbation index

V = det [zij - ,:j] = det [e,-j] (3)

If the perturbations are linearly independent, they span, together with their
origin, the nonperturbed initial state, a n-dimensional convex set defined by
the coordinate origin and the n forecast errors of perturbed trajectories. The
determinant represents the volume of this set. It is zero if the vectors &; are all
in a hyperplane. This is, in turn, the case if all the model forecasts and the real
plant states differ only in directions constituting a hyperplane, and do not differ
in directions from the subspace orthogonal to this hyperplane - which is all what
we can expect in a chaotic attractor.

Criterion (3) is applicable only if measurement trajectories can be sorted to
extract a sufficient number of n-tuples of their segments starting at n sufficiently
close points.

If this is not feasible, the next best criterion is
V = det [Zij - Cl,] (4)

representing the deviations of perturbed forecasts from a single (nonperturbed)
trajectory of the real plant. What is actually perturbed is the initial states of
the model trajectories. Each model trajectory starts at a point %y = dg + 6¢j,
with €; being unit vectors and § a small number.

If (4) converges to zero with increasing distance from the forecast initial point
Zo, the model possesses an attractor of dimension lower than n. If this attractor
is a strange attractor of the same dimension as that of the real chaotic sys-
tem attractor, their shapes can be made identical by training on an extensive
training set containing sufficiently many trajectories through the attractor. In-
sufficient correspondence between the model attractor and that of real system
would cause their local interpolating hyperplanes to be different. This, in turn,
would inevitably lead to a volume criterion not converging to zero for some
forecasts.

However, criterion (4) may have a spurious minimum corresponding to the sit-
uation in which the model has an attractor of a lower dimension than that of
the real plant - typically, a point attractor while the real plant has a strange
attractor. This can be prevented by extending (4) to

141



ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 139-144

Y

Figure 1: Roessler attractor
V = det [Zij - d,] + Z miinﬂzij - dz” (5)
j

requiring that forecast errors are small at least for some variables.

Criterion (3) or () is to be minimized by some training algorithm. The horizon
for multi-step forecasts is to be sufficiently long for convergence to the strange
attractor, but not excessively long, for information loss by chaotic behavior not
to be complete.

4 Computational experiments

The concepts of Section 3 are particularly illustrative if applied to the Roessler
model described by the equations

Y-z
z+ay (6)
br —cz +zz

w8
i

with parameter values a = 0.38,6 = 0.3, ¢ = 4.82. For this parameter combina-
tion, the Roessler model has a strange attractor. Moreover, with this parameter
combination, the system is in the proximity of a homoclinic point (Nicolis and
Prigogine [4]), in which all chaotic trajectories pass through an infinitesimally
small bottleneck at the proximity of origin (Fig. 1). This configuration makes the
forecast particularly difficult. The results received with neural network based
multi-step identification procedure (Hrycej [2]) are given in Fig. 2. Fig. 2A shows
the forecast of variable Z for 1000 time periods of length 100 ms with additive
multi-step criterion. (the measurements in bold line). Fig. 2B shows the same
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Figure 2: Roessler system identification

for criterion of type (4). Obviously, some parts of the attractor are flat in the
Z-direction while others consist of peaks of chaotic height. A successful forecast
should identify the flat parts of the trajectory with a large precision while the
height of the peaks remains, after reaching a certain time horizon, unpredictable.

It can be seen that while additive criterion model “loses the contact with reality”
after about 350 steps (site I). Error volume criterion model loses the contact
only temporarily, rejoining the measurement after about 380 steps (site J) - in
other words, the model fails to forecast only the peak between sites I and J.
The forecast deteriorates only after about 600 steps (site X), but once more
correctly identifying the peak at the 800-step (site L).

To measure the quality of the identification of attractor itself, viewed as a subset
of the state space, the state space has been divided into 18018 cells, and the
visits of the real system and of the model in individual cells have been counted.
For each cell, the minimum of both counts has been determined. The sum
of all minima, if related to the total count of iterations is a simple measure
of correspondence of both attractors: the sum is equal to the iteration count if
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both attractors are identical within the given observation grain, and is zero if the
attractors are completely disjoint. In other words, it is a measure of intersection
of both attractors. For additive squared error, the intersection has been only
63.87 %, while for error volume criterion, it has been 83.20 %.

5 Limitations

The arguments of Section 3 are based on the assumption of the local approxi-
mation of the attractor by a hyperplane. Of course, strange attractors are no
hyperplanes. The approximation is good only as long as there are several regions
that are approximately planar, such as at the bottom of the Roessler attractor
of Fig. 1. Then, the “thick” dimension will be able to be forecast. However, the
divergence between forecast and real state can go so far that both are in different
such regions. In this case, the chaos will be complete, and even the error volume
criterion cannot be expected to help. However, it is then still possible to model
the attractor, that is, to look for a model whose strange attractor (as a state
space subset) is a good approximation of that of the real system. A (frequently
satisfied) precondition for this is that the system is structurally stable, i.e., that
a small perturbation in model parameters does not change the qualitative type of
the attractor. Nevertheless, the horizon of possible forecast will be substantially
extended by the use of the error volume criterion.
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