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Abstract.

This work introduces a multiple connectionist architecture based on a
mixture of Recurrent Neural Networks to approach the problem of speaker
adaptation in the acoustic feature domain (i.e. speaker normalization).
Normalization is applied to the case of a speaker-independent (SI) speech
recognition system based on continuous density hidden Markov mod-
els. The technique for combining multiple recurrent models is discussed.
Recognition experiments with a continuous speech large dictionary task
shows that the proposed architecture is capable to tangibly improve
recognition performance, allowing for a 21.9% reduction of the word error
rate.

1. Introduction

This work deals with speaker normalization [6]. The aim is the reduction of
the difference between the acoustic space of a speaker and the training acoustic
space of a speech recognizer, in order to increase recognition performance.

Speech recognition systems work on a parametric representation of acous-
tic data. Let X = {x;,Xs,...,x7} be the parametric representation of an
input speech signal, e.g. corresponding to a sentence uttered by the new
speaker, where x; € R? is feature vector at time i. We want to estimate
a feature transformation ¢, such that the transformed test utterance X =
{¢(x1), ¢(x2), ..., 6(x1)} better matches the recognizer training data, resulting,
on average, in improved recognition performance. In general ¢ is estimated
starting from a learning corpus of vector pairs £ = {(xn,ys) |2 =1,...,,N},
where {x,} are feature vectors in the acoustic space of the new speaker, while
the corresponding {y,} are vectors in the training space of the recognizer. The
training set £ is in general obtained from a (small) set of adaptation utterances
collected from a new system user during an enrollment session. A suitable pro-
cedure is adopted here for generation of £ in the case of SI speech recognizers.
Estimating ¢ can be afforded either with statistical techniques [1, 8] or artificial
neural networks (ANN) [6, 4].
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A generalized Multi-Layer Perceptron [5] is first considered to solve the
above regression problem. In order to exploit the sequential nature of speech
patterns, the use of Recurrent Neural Networks (RNN) is then investigated.
Multiple linear models, as well as mixtures of both static and recurrent nets,
are finally developed and compared. The mixture of recurrent models requires
an ad-hoc combination method based on statistical considerations on the trans-
formed metrics of the input space, induced by the dynamics of the networks.
Results in a continuous speech, large dictionary task obtained with a mixture
of 8 phone-class dependent RNN yields a significant 21.9% Word Error Rate
(WER) reduction with respect to the SI continuos density hidden Markov model
(CDHMM) based recognizer alone.

2. The recognizer and the experimental environment

A set of 34 context independent acoustic-phonetic speech units is modeled
with left-to-right Continuous Density HMMs [9] . Each emission probability is
modeled with a mixture consisting of 16 Gaussian components with diagonal
covariance matrices. System training was performed using 2140 utterances
from 100 speakers (50 males and 50 females). '

The recognition task consists of dictation of fragments of newspaper articles
taken from the financial Italian journal Il Sole 2{ Ore. It is a continuous speech
task with word dictionary size of 10,000. For each of four test speakers (3
males and 1 female), two sets of utterances were collected: the adaptation set
(15 utterances) and the test set (30 utterances). Each utterance presents a
duration of 12 sec. on average, approximately corresponding to 19 words.

Speech signals were processed in order to obtain an adequate parametric
representation. For each franie, 8 Mel Scaled Cepstral Coeficients (MSCCs) [2]
and the log-energy, together with their first and second order time-derivatives,
were extracted and arranged in a 27-dimensional feature vector.

The training set £ = {(x;,y;)} is built as follows. Each adaptation utter-
ance is aligned against the concatenation of Markov models corresponding to
its phonetic transcription. A suitable Viterbi [9] alignment strategy puts in
correspondence each feature vector of the input sequence to a specific model, a
specific state within the model, and an individual Gaussian component (among
the component densities attached to the state). An association is thus estab-
lished between the input feature vector and the mean vector of the correspond-
ing Gaussian component. The latter plays the role of a synthetic pattern in
the training acoustic space of the recognizer, and becomes the corresponding
target vector for the input frame.

3. Architecture and dynamics of the recurrent model

The basic neural model that was adopted is a 2-layer Multi-Layer Perceptron
(MLP), trained with the backpropagation (BP) algorithm [5], in the stochastic
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gradient version. An adaptive learning rate and a momentum rate were used.
An equal number of input and linear output units, namely 9, was set to coincide
with the dimensionality of the normalization problem (8 MSCCs and the log-
energy). The hidden layer was built of 48 sigmoidal units.

The class of RNN that was considered presents an extra set of status or
context units, providing a kind of duplicate of the input layer. The context
layer is linked with feedforward connections to the hidden layer. Direct lateral
connections from each input unit to the corresponding context unit hold, with
shared weight w;. Self connections with weight w; are also present in the
context layer, as well as back recurrent links from each output unit to the
corresponding backup unit of the newly introduced layer, with shared weight w.
A time-delay mechanism is also allowed on additional backward connections,
with the addition of extra units with delay lines. The role of the context units
is to keep track of an internal, evolving state of the network. The dynamic
of context unit k is described in terms of its output o; at time ¢t > 0, whose
equations are

Ok(O) = 0 . (1)
ok(t + 1) = wize(t) + weor(2) + Y920 wi My (t - 5)

where w; is the common weight of lateral connections between input unit &
and the context unit itself, z;(t) is i-th component of t-th pattern in the input
sequence, y;(t) is i-th output of network at time ¢, and ¢ is the number of steps
back in time at which the past outputs are to be considered.

4. Multiple-model regression: combining recurrent nets

Speaker normalization can be formulated as a multiple regression problem.
Given the set of observations £ = {(x;,y:) | i = 1,..., N} to be fitted, the
regression equation considered here is in the form

yvi= ) wi(xi)fi(xi,0;) + e (2)

j=1

where ¢ models fi(), ..., fo() are simultaneously considered, along with their
parameter vectors @1, ..., @,. ¢; is a random vector having mean y; = 0 € RY
and covariance matrix £;. The contribution from each model f;() is determined
by the value of the corresponding weight w;() that, in turn, is a function of the
independent vector x;. For a given input, weights must sum to 1. The problem
is to determinate the parameters @, ..., ®, that allow for the best fit of the
observations in £. When neural networks are used as regression models, the
parameters are the connection weights. In terms of Mizture of Ezperts [7] eq.
2 is defined to be a linear opinion pool model.

In the speaker normalization setup we assume that the acoustic vectors of a
given speaker can be described as random vectors drawn from a finite mizture
density function p(x) that can be expressed as
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p(x) = pi(x)I; (3)
j=1

with Gaussian component densities p;(x) and mixing parameters I}, for j =
1,...,c. Here pj(x) denotes the class-conditional probability density function of
x given j-th of ¢ acoustic populations, or classes. Populations have a priori class
probabilities I, I, ..., II., respectively, and the obvious condition Z;___l II; =
1 holds. When labeled data are available, i.e. a class label is attached to each
training vector x;, supervised parameter estimation can be performed on a
class by class basis. A natural choice for the weights w;(x;) of eq. 2 is given,
once eq. 3 holds, precisely:

__ ipi(xi)
i) = S pe (k)
Each model fj() of eq. 2 is specialized on the corresponding class, through a
weighted training technique based on the weights computed so forth. In this
work, the ¢ component densities are estimated considering to which phonetic
class a given feature vector x; is assigned, according to the Viterbi alignment
procedure, so that ¢ = 8.

When each f;() in eq. 2 is realized using a static MLP, learning is accom-
plished using a gradient descent method that takes into account the weight
wj(x;)- that -th training pattern in £ has on the training of j-th model. This
requires the minimization of an objective function of the form

1 N d c
Bz 2303 (= Y wii)op(x)? (5)

i=1 k=1

(4)

where 0;1(x;) denotes k-th output of network j when fed with input x;. Calcu-
lation of a weighted version of the BP algorithm is straightforward, by taking
partial derivatives of eq. 5 with respect to the connection weights.

In the static case, weight is assigned to a given (local) model according to
statistical considerations concerning the distributions of patterns in the acous-
tic feature space. This approach is no longer viable in the case of dynamic
architectures, because the competence of an individual ezpert over a given in-
put pattern is not a function of the current input only. Considering eq. 1, the
behavior of the recurrent models can be seen as a static feed-forward compu-
tation over a transformed input space. This can be stated by saying that the
recurrent connections induce a new, modified metric over the input space. The
combination technique for RNN proposed herein, follows from an application
of the weighting criteria discussed for static models on the transformed input
space induced by the recurrent connections. Statistical criteria applied to the
transformed space concern dynamical properties of each ezpert (each point in
the new space is a trajectory in the original space), and competence is assigned
according to sequences, rather than on individual data.
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5. Experimental results

The regression techniques previously described, along with a linear regression
based on least squares criterion (computed using the Singular Value Decompo-
sition technique [3]) introduced for comparison purposes, were applied in a set
of recognition experiments in combination with the SI recognition system.

The results are summarized in Table 1 where performance (averaged over
the four test speakers) obtained with the SI system alone (Baseline) is com-
pared with that obtained applying the three normalization modules. During
experiments, just the 8 MSCCs and the log-energy are transformed by the nor-
malization module. To complete the parametric representation, required by the
SI recognizer, first and second order derivatives are computed from transformed
coefficients.

Table 1 shows that the single linear module is unable to improve the base-
line, while the model based on single MLP tangibly improves the system perfor-
mance. Furthermore, the module based on single RNN outperforms the other
models. This emphasizes that the required feature vector transformation is
highly non-linear, and that RNN better exploits the sequential nature of the
training data.

Table 1: Average WERs for the test speakers using the SI recognition system
and different normalization modules.

Module Word Error Rate
Single model | Multiple model
Baseline 114 114
Linear 11.5 9.6
MLP 10.2 9.3
RNN 9.3 8.9

Multiple regression modules outperform the corresponding single modules
(this is particularly evident in the case of the multiple linear model). Module
based on multiple RNN still performs better than the module based on multiple
MLPs (although the improvement is not so evident as in the single model case),
finally yielding a tangible 21.9% WER reduction with respect to the SI baseline.

6. Conclusions

This paper presented an approach to multivariate regression problems based
on the combination of multiple RNN. The architecture and the dynamics of
the nets, as well as a combination technique based on statistical properties of
the feature space were described. The proposed technique is an extension to
the mixture of static, generalized feed-forward connectionist models.
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The technique was applied in a difficult and widely investigated non-linear
regression task, namely speaker normalization for a SI recognition system. Lin-
ear regression resulted unable to improve performance of the baseline system.
Regression based on single connectionist models allowed for a gain, and multi-
ple connectionist models based on ANN mixtures further improved the perfor-
mance. RNN better exploited training data, outperforming MLP in both the
cases of single and multiple model regression, resulting in a remarkable 21.9%
WER reduction with respect to the SI baseline when 8 models, one for each
phone-class in the feature space, were used.
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