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Abstract: Based on the wavelet theory, a new type of Wavelet Neural
Network (WNN) is presented. For conventional neural networks (NN), the
nonlinear activation function is fixed, such as the sigmodal function. In this
paper, the nonlinear function is a linear combination of wavelets, that can be
updated during the networks training process. This new type of WNN is
applied to function approximation and it exhibits much higher learning ability
compared to the conventional one. Furthermore, BP algorithm and QR
decomposition based training method is derived for the proposed network.

1. Introduction

The back-propagation (BP) training algorithm is probably the most popular
method used in NN, but it often suffers from getting stuck in the local minima or
slow convergence. Usually, a sigmoidal function is adopted as the nonlinear
activation function. Meanwhile, employing various kinds of basis functions in NN
have also been investigated, such as hyper basis, splines, polynomial and radial basis
function. On the other hand, wavelet theory have attracted considerable attention in
many applications in signal processing and numerical analysis.  Wavelet
decomposition has emerged as a new powerful tool for representing nonlinearity, and
a class of network combining wavelets and neural networks have recently been
investigated. There are mainly two approaches to obtain the so-called wavelet neural
network (WNN). One of them is to use wavelet functions as an activation functions
because wavelets have many advantages over other basis functions [1,2]. The
number of the hidden units was given a priori. The other approach is to replace
each sigmoidal unit with a wavelet basis, which is determined by using the time-
frequency localization properties under a given accuracy [4]. However, a relative
large number of hidden units is usually required. This paper considers the
combination of wavelets and neural networks for function approximation, which is
similar to the first approach. The difference is that the sigmoidal activation function
of NN is replaced with a linear combination of wavelet bases, and the activation
function can be updated during the learning process. Basically, the activation
function is adaptively determined rather than fixed. The purpose of the paper is to
demonstrate the ability of function approximation of this new type of WNN. For the
sake of simplicity, we consider only the one dimensional function approximation in
this paper although the methods can be extended to higher dimensional case.
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2. Network architectures for approximation

Let f(x)eI*(R) be an arbitrary function. The problem of function
approximation can be stated as: given a set of training samples,
Ty = {6,/ O}, M
choose the weights of a given network such that the following total squared error is
minimized

P
E= 3G wF, @
i=1

where Y, is the actual network outputs corresponding to the ith training pattern.

Here, we have assumed that the training samples were not corrupted by noise. To
solve the problem, various kinds of networks have been proposed such as NN, radial
basis function (RBF) network and WNN. A good network for approximation should
be capable of obtaining a very small approximate error with less parameter and with
a simple algorithm. Before our network is introduced, we briely review some known
results.

2.1. Neural Networks

The output, g(x), of a three-layer NN is represented by the following finite sums
of the form:

N
g(x)=> wola x+b), ?3)

i=1
where w;,b, eR, a; € R”, o() is a given function from R” to R, xeR" is the
input vector. It has been proved that the output, g(x), is dense in the space of
continuous function defined on [0,1]" if o() is a continuous, discriminating
function. Generally, o(-) is adopted as a sigmoidal function that is discriminatory.
However, due to the greedy nature of the BP algorithm, the training processes often
settle in undesirable local minima of the error surface or converge too slowly. The
purpose of this paper is to enhance the approximate capability by adaptively adopting
the activation function o(-) based on wavelet decomposition.

2.2. Wavelet neural network (WNN)

From the theory of the continuous wavelet transforms, we know that the collection
of all finite sums of the form

N
g(x)= Z widil/zy/(dix -1) “)
i=1

is dense in L?(R). Here d; and ¢, are the dilations and translations, and d; >0.
w(-) is a given function called the ‘mother wavelet’ whose dilation and translation
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form a frame for the I2(R). Zhang and Benveniste ([1],1992) presented a network
structure of the form

N
gx) =D wydx—t)+h )

i=l1
where /4 is introduced to deal with nonzero mean functions on finite domains. Their
experimental results have shown that the WNN have better approximate capability
than the NN. By comparing (5) with (3), it is obvious that the sigmoidal activation

function is replaced by the wavelet function.

On the other hand, the theory of the discrete wavelet transforms shows us that for

some a>0and b>0, the sequence {y,,}is a frame for [?(R) where,

v, =a"*w(a"x—mb) and m and n are integers, and w(-) is a ‘mother wavelet’

A 2
that satisfies an admissibility condition, J.y/(x)dx =0 or ”y/(a)) /oo <o . In

. this case, we can write an expansion of any f(x) € I? (R) as
Y= Wl - ©6)
mn

We call (6) the wavelet decomposition. Pati and Krishnaprasad ([3], 1993)
connected the wavelet decomposition with NN by applying Daubechies’ results [4].
They then proposed the following network form

8= D W (%), )

(m,n)el

where the index set I is integer translation and integer dilation, which are
determined by using the time-frequency localization properties under a given
accuracy [3], [4], [6]. And a=2, 0<b<35 and w(-) is a linear combination of

three sigmoids, i.e., w(x)=s(x+2)—2s(x)+s(x—2). In this network, only the
weights w,,, will be identified. So it is easy to minimize £ by using standard
optimization algorithms and we can obtain a global minimizer w,, . However, the

number of hidden units, which is equal to the number of elements in I, is usually
large.

2.3 Neural network adaptive wavelets

The choice of an appropriate activation function is crucial to the performance of
the NN. In WNN, the activation function is the mother function. As wavelet
decomposition has remarkable capability for representing nonlinearity, in this paper
we consider that the activation function in NN is expressed by wavelet
decomposition rather than fixed. This enabled the activation function to be adjusted
during the learning process. The output, g(x), of this new type of NN depicted in

Fig. 1 is represented by the following form:
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Fig. 1. The architecture of the neural network.

N AN
gx) =D wy(ax+b)+h, ®)
i=1

N
where y(x)= Z w,,w(a"x—mb), {a" 2a,//(a"x—mb)[m,n €Z} is a frame for the
(m,n)el
I>(R) and 1 is the index set of pairs (m,n) of integer translation and integer

dilation. The parameter 4 is introduced so that the approximation of functions with
nonzero average is possible [1]. The (8) can be rewritten as the following equivalent:
forms:

N
g(x)= Zw,. Zwmny/[a”(aix+b,-)—mb]+h ©
i=1 (m,n)el
or
N
g = D Wy > wyla"(ax+b)—mb]+h (10)
(mm)el i=1

3. Simulation results

To demonstrate the approximate capability of the propoSed network, it is applied
to approximate two nonlinear functions. All simulations were performed under a
486DX2-66 PC by using MATLAB for Windows. In these examples, we selected the

. o _y2
“Gaussian-derivative” w(x) = —xe 2

as a mother wavelet and put a=2,b=1
[1], [4]. The error measure function £ used is the mean squared error, i.e., (2). The
parameter /2 was initialized by the mean of the function observations, and the other
parameters were simply randomized between -0.5 and 0.5. It should be emphasized
that the initialization of parameters is special in [3]. In this paper, we simplify the
procedure of initializing the parameters in order to compare the approximation
capability of the different networks.

The first example is to approximate the function f(x) =0.5¢™ sin(6x) over the

domain [-1,1]. The uniformly sampled test set of 100 points are available for
learning. For comparison both the proposed network with 5 neurons and 9 wavelet
coefficients and the wavelet network (4) with 8 wavelons are used to approximate the
function with standard BP algorithm. In both cases, 25 parameters are adjusted. Fig.
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2 is the total squared errors over 2000
iterations, where the solid line shows
the error of the proposed network and
the dashed line represents that of the
wavelet network. It is clear that the
proposed network provides a better
result than wavelet network. Fig. 3
shows the results with the proposed
network after 5000 iterations, the total
squared error is 0.0112. The solid line
represents the function f while the
dashed line shows the approximations.
In the above example, based on
standard BP algorithm, it required
5000 iterations to converge to the total
. squared error of 0.0112. In order to
speed up the rate of convergence and
enhance the approximation capability
of our network, we divide the training
process into two steps. Firstly,

N
letw(x)=w(x)and wuse the BP

algorithm for the network training. In
this case the network is a wavelet
network (4) but may require less
parameters. In this stage, the activation
function is fixed in the training
process. After some iterations, all the
parameters are then fixed. The second
stage is to use the QR decomposition to
adjust the activation function according

to the form in (10). This process is
simply equivalent to solve a least
squares minimisation problem.
Obviously, the overall rate of
convergence can be speeded up. Our
results show that only 100 iterations
with BP algorithm together with the
QR decomposition is required to
deliver a total squared error of
7.9954 x10™° for the same problem.
Fig 4 shows the approximation result is
significantly enhanced and with less
computational time.
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Fig. 2: The total squared errors of the WNN
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The second example is to approximate the following function by using the
proposed training method. The piecewise function is defined as

-225x+10 0<x<04
f(x)= 40x—-15 04<x<05
—x—=05 - 20
Se sm(T (x-05)+5 05<x<1

The proposed network with 5 hidden units and 25 wavelet coefficients, 41
parameters is firstly trained by the BP algorithm with 400 iterations and then QR is
used. The total squared error is 0.0546. The approximate result is shown in Fig. 5.

4. Conclusion

In this paper a new type WNN is proposed for function approximation. The
activation function of the WNN is a linear combination of wavelet bases, that can be
updated during the training process. Simulation results are presented which indicate
the network has a better approximation capability. Based on the BP algorithm and
the QR decomposition, a training method for the proposed network was also derived
and has been validated by the given results. The further theoretical work in exploring
the selection of different wavelet bases will be reported in our later work.
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