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Abstract.

This article examines how model specification in neural networks can be
guided by statistical inference techniques. We develop a model selection
strategy based on a sequence of statistical hypotheses tests, both LM—
tests and Wald-tests. The strategy is evaluated in a simulation study
and shown to be a very effective tool for network specification.

1. Introduction

Recently, there is growing interest in the modelling of nonlinear relationships.
Unfortunately, for many applications theory does not guide the model building
process by suggesting the relevant input variables or the correct functional
form. This difficulty makes it attractive to consider an ‘atheoretical’ but flexible
class of statistical models. Artificial neural networks are well suited for this
purpose as it is known that they can approximate virtually any function up to
an arbitrary degree of accuracy. This desired flexibility, however, makes the
specification of an adequate network architecture even more difficult. Despite
the huge amount of network theory and the importance of neural networks in
applied work, there is still little experience with a statistical approach to model
selection.

In this article we develop a model selection strategy for neural networks
which consists of a sequence of statistical hypotheses tests. Taking a statistical
perspective seems especially suited as it is just the lack of knowledge about
an adequate functional form which calls for the application of neural networks.
The specification strategy will be evaluated in a simulation study and found to
be highly effective in identifying an adequate network architecture.

2. Neural Network Models

In this article we exclusively deal with so called ‘multilayer perceptron net-
works’. Neural networks of this kind can be interpreted as a very flexible class
of nonlinear regression models. The dependent variable y is predicted by the
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network output, which is a function f(X, w) of the input data X and the net-
work weights w = (8',4')’. For a network of the type used in this paper the
function takes the form

H I
FX,w) = Bhg(D_ vhiws)- (1)
h=1 =0

The variable zq is defined to be constant and set to zg = 1. The scalars I
and H denote the number of input and hidden units in the net and g(-) is a
tangens hyperbolicus function attached to each hidden unit.

It is still the most unresolved question in the literature of neural networks
what architecture is best to assume for a given problem. A desirable network
architecture contains as little hidden units and connections as necessary for a
good approximation of the true function, taking account of the tradeoff between
estimation bias and variability due to estimation errors. Unfortunately, the
form of the true function is seldomly known. It is therefore necessary to develop
a methodology to select appropriate network models.

The usual approaches pursued in the network literature are regularization,
pruning, and stopped training.! Although some of these methods may lead to
satisfactory results, they comprise of a strong judgemental component, which
makes the model building process difficult to reconstruct. This deficiency will
be overcome by the strategy proposed in section 4. The next section briefly
reviews statistical inference techniques for neural networks, which will serve as
building blocks for the modelling strategy.

3. Hypotheses Testing in Neural Networks

Statistical inference in MLP-networks was developed by White (1989b). He
showed that — if the parameters of a neural network are identified — they
can be consistently estimated by maximum likelihood methods. Moreover,
the parameter estimates of a network are asymptotically normally distributed.
This knowledge in principle allows for the application of standard asymptotic
hypotheses tests, such as Wald—tests or LM—tests.

Before parameter tests can be applied, however, it must be ensured that
the parameters — apart from symmetric solutions — are uniquely identified.
This is not the case when a network contains irrelevant hidden units. Since
the f—weight of an irrelevant hidden unit would theoretically be zero, the y-
weights which lead into this hidden unit could take any value and are thus not
identified. Similarly, if the y-weights which lead into a hidden unit are all zero,
the corresponding S-weight is equally not identified.

In other words, if we want to apply asymptotic normal distribution theo-
ry in neural network models, we must guarantee that the parameters are at
least locally unique, i.e. there are no irrelevant hidden units in the network.
Two techniques have been proposed in the literature yielding a y2-statistic

'Reed (1993) provides a survey of these methods.
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for testing the irrelevant hidden unit hypothesis and avoiding the identifica-
tion problem. One technique was developed by White (1989a) and its pro-
perties investigated by Lee/White/Granger (1993). The other was devised by
Terasvirta/Lin/Granger (1993) and compared to the former.

White (1989a) suggests drawing the y—weights of an additional hidden unit
from a random distribution. This amounts to a random choice of the para-
meters in y-space. The subsequent test on the S-weight of the additional
hidden unit is carried out conditional to the random values of the y—weights.
Terasvirta/Lin/Granger (1993) propose the application of a third order taylor
expansion of the additional hidden unit, which equally leads to an avoidance
of the identification problem. Both tests are performed in the fashion of a
standard Lagrange multiplier test.?

When the network does not contain irrelevant hidden units, one can test
for arbitrary parameter restrictions on the y—weights by help of a Wald—test.

4. Model Selection Strategy

In the process of network architecture selection we have to guarantee model
identification whenever inference techniques are used. Consequently, the stra-
tegy cannot adopt a top down approach which starts with a large (and pro-
bably over-parameterized) neural net. To obtain statistically valid results, the
strategy begins with the smallest model possible and successively adds more
complexity.

The strategy runs as follows: As a starting point all I input variables are
combined with one hidden unit and the relevance of this unit is tested by the
LM-test procedures of White (1989a) or Terasvirta/Lin/Granger (1993). If the
test fails to show significance, the whole procedure would stop; if the unit is
relevant, it is included in the model. In this case the network is estimated and
a further fully connected hidden unit tested for significance. The procedure
continues until no further additional hidden unit shows relevance. After the
number of hidden units is determined Wald-tests are applied in a top down
approach to decide on the significance of single input connections. If there are
insignificant connections, the one with the highest p-value is removed from the
model and the reduced network retrained thereafter. This procedure is carried
on until only significant connections remain in the model.

The proposed strategies ensure that the percentage of selected models which
are overparameterized with respect to the number of hidden units is bounded by
the sizes of the LM—tests.? In how far the procedure favours too small models
depends on the power of the tests and will be investigated in the simulation.

2A detailed explanation of both procedures is given in Anders/Korn (1996).

3The test sizes may be different from the chosen significance levels in finite samples.
Simulation results for the size of White’s neural network test are given in Lee/White/Granger
(1993)
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5. Simulation Study and Results

In the simulation study we consider three network models of different comple-
xity. The models consist of three, five and seven variable inputs in addition to a
constant input ¢ and have three, four and five hidden units, respectively. In all
networks there is one linear output unit. Thus the architecture of the networks
can be expressed by 3e¢-3-1, be-4-1 and Te-5-1. None of the networks is fully
connected. Instead the connections are chosen due to the following rule: link
the first input to all hidden units, the second input to all but the last hidden
unit, the third input to all but the last two hidden units and so on.

The independent variables X are drawn from a standard normal distributi-
on, while the - and y-weights are selected such that the outputs of the hidden
units are as far uncorrelated as possible, in order to give the hidden units a high
justification. Finally zero mean normal error terms are added to the conditional
mean of y. The standard deviation o, of the noise is chosen to be either ten or
twenty percent of the conditional standard deviation ogpy x] of the network’s
output. The whole set of simulated data consists of 2000 observations, which
we split into an in-sample training set and an out-of-sample set with 1000 data
points each.

In the simulation we compare the out-of-sample mean squared prediction
errors (MSPE) of the true model, a model with the true model structure but
estimated weights and a model resulting from our selection strategy.* All tests
employed in the strategy, LM—tests as well as Wald-tests, are carried out on a
significance level of 5 percent. We repeated the experiment a hundred times,
each time redrawing the in-sample random errors. The best out-of-sample
performance which the model selection strategy can — apart from chance —
achieve, is the out-of-sample MSPE of the true model. As we leave the out-of-
sample noise unchanged, this value is taken as a benchmark.

The results of the simulation study are given in the following tables. Column
1 contains the model abbreviations. Column 2 reports how far the model
with the true structure (TS) and estimated weights deteriorates from the true
model (TM). This is measured by the relative differences in the out-of-sample
MSPEs of the two models calculated as (MSPETg — MSPETyM)/ MSPETy. The
numbers given in the tables are the averages over the hundred replications of
the simulation study.

Column 3 provides the corresponding results for the models chosen by the
model selection strategy (MSS). Column 4 reveals the deterioration of MSPEs
when moving from the TS to the MSS-models. Column 5 finally shows how
often the model selection strategy found a number of hidden units (NH) that
was smaller, equal or larger than the true number of hidden units.

The simulation results for the model selection strategy employing the LM—
test of Terdsvirta/Lin/Granger (1993) are encouraging. In the case of the
smaller models (3c-3-1 and 5c-4-1) the out-of-sample performance of the selec-

4To reduce the problems of converge to a local maximum of the likelihood function we ran
the model selection strategy several times with different starting values and took the model
yielding the smallest in-sample mean squared error.

106



ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 103-108

tion strategy is less than 4% worse than that of the true model (column 3).
This is a particularly small value as even the knowledge of the true network
architecure cannot reduce the MSPE much further. The difference between the
models of the true structure and the ones selected by sequential testing is less
than 2% on average. In some cases the model selection strategy even improved
the out-of-sample performance of the true model.

[ Models | TS vs. TM [ MSS vs. TM [ TS vs. MSS [ NH <, =, > |

3c-3-1 1.12% 1.43% 0.30% | 00,74, 26
Hc-4-1 2.07% 2.88% 0.79% | 00,85, 15
Tc-5-1 3.97% 5.97% 1.92% | 00, 49, 51

Table 1: 0. = 0.10g[y, x], using LM-test of Terasvirta/Lin/Granger.

| Models | TS vs. TM | MSS vs. TM [ TS vs. MSS | NH <,=, > |

3c-3-1 1.20% 1.55% 0.34% | 04, 88, 08
A1 2.37% 3.67% 1.27% | 02,87, 11
Te-b-1 3.40% 13.53% 9.80% | 55, 43, 02

Table 2: 0. = 0.20 (| x], using LM—-test of Terasvirta/Lin/Granger.

| Models | TS vs. TM | MSS vs. TM | TS vs. MSS | NH <,=,> |

3c-3-1 1.00% 3.54% 2.52% | 20,75, 05

5c-4-1 2.18% 13.83% 11.40% | 95,05, 00

Tc-5-1 3.66% 56.96% 51.40% | 89, 11,00
Table 3: 0. = 0.10g[y| x], using LM—test of White.

Models | TS vs. TM | MSS vs. TM | TS vs. MSS | NH <,=,> |
3c-3-1 0.98% 3.05% 2.05% | 60,40, 00
5c-4-1 2.53% 7.02% 4.39% | 100, 00 , 00
Tc-5-1 3.72% 24.90% 20.43% | 100, 00, 00

Table 4: 0. = 0.20g[y| x), using LM—test of White.

The true number of hidden units is found by the model selection strategy
in at least 74% of all replications. When the true number of hidden units is
not found the strategy seems to overestimate the number of hidden units. The
percentage of models with too many hidden units clearly exeeds the chosen 5
percent significance level of the LM—tests. It should be noted, however, that
even if we end up with too many hidden units, the resulting model is not
generally overparameterized. Since in the top down step of the specification
strategy several vy-weights might have been removed, the overall number of
parameters may even be smaller than for the true model.

If the true model becomes larger (7c-5-1) the out-of-sample MSPE grows,
but it is still less than 10% higher than for the true structure. It is interesting to
note that the selection strategy tends to underestimate the number of hidden
units for the large model with o, = 0.20g[yx]. This may indicate that the
power of the tests is not sufficient for the given noise level and the available
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number of one thousand data points in the training set.

The results of the model selection strategy employing the LM—test of White
(1989a) are shown in tables 3 and 4. The performance of the model selection
strategy is still reasonable but clearly inferior compared with the results in
tables 1 and 2. The worse performance of the selection strategy based on
the White test stems from an underfitting of the true model, as many of the
chosen specifications contain less than the true number of hidden units. The
LM-test proposed by White (1989a) seems to have less power than the method
of Terasvirta/Lin/Granger (1993).

6. Conclusion

In this article we introduced a systematic approach to model selection in neural
networks. Our model selection strategy consists of a sequence of hypotheses
tests, where LM—tests are followed by Wald—tests. In order to avoid the non-
identification of neural networks we employed two alternative methods due to
White (1989a) and Terésvirta/Lin/Granger (1993).

The model selection strategy was evaluated in a simulation study. It turned
out that the selection strategy based on the LM—test of Terasvirta/Lin/Granger
(1993) is clearly superior. When this test is employed, the strategy leads to
models with a very good out-of-sample performance, being not much worse
than the true model. In most cases the strategy identifies the correct number
of hidden units and therefore achieves a good balance between under- and
overfitting. The overall results of the simulation provide evidence that the
proposed strategy is a powerful tool for neural network model building. This
is promising for applications with real data sets.
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