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Abstract. This paper describes Weighted Radial Basis Functions, a
neuro-fuzzy unification algorithm which mixes Perceptrons and Radial
Basis Functions. The algorithm has been tested as a pattern classifier
in practical applications. Its performance are compared against those of
other neural classifiers. The proposed algorithm has performance compa-
rable or better than other neural algorithms, although it can be trained
much faster. It can also act as a neuro-fuzzy unification algorithm.

1. Introduction

Most traditional neural pattern classifiers [0, 0, 0, 0] are based on either Multi
Layer Perceptrons (MLPs) or Radial Basis Functions (RBFs) [0]. Both algo-
rithms have several advantages and drawbacks [0], some of which are shortly
described below.

MLPs are correlation-based algorithms: each neuron output is based on
a non-linear correlation between the input vector X and a weight vector wi
associated with neuron j. Correlation is used since it is an operator which
maximizes the output when X and WY are most similar, provided that input
magnitude ||X || s constant [0]. Unfortunately, when that is not constant (as it
often happens in classification tasks), the higher is || X|| the higher is the neuron
output, even if X and W are not similar. This requires either to normalize the
input vector (when input magnitude is immaterial for the classification task),
or to use a more complex network (namely, two layers instead of just one).

Another problem typical of MLPs trained using either Back-propagation
or Hebb rules is that weight corrections are proportional to the input value,
therefore weights associated with low input values cannot easily be trained.

RBF's are distance-based algorithms: each neuron output is a non-linear
function of the distance between the input vector X and a center vector C7
associated with neuron j. The distance is a metric which is used as it maximizes
the output when X and €V are most similar, independent of input magnitude
HXH (this is the major difference with respect to MLPs).

Yet, RBF networks may suffer from the dimensional problem, which arises
when trying to sum up different inputs which do not have the same physical
dimension (namely, an heterogeneous input space). Another problem is that
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decision boundaries, which are always spherical, may not be optimal in several
classification and function approximation applications.

Note that, when the input magnitude is constant, MLP and RBF neurons
can be made almost identical to each other [0]. That happens, for instance,
either when input vectors are normalized, or with binary inputs, or with images
taken from a camera with automatic brightness compensation.

One major problem which arises in both MLPs and RBF's can be explained
through an example: in MLP classifiers trained using supervised learning
rules [0], it often happens that there are several input elements which are asso-
ciated with large weight values, although they are immaterial for the required
classification (for instance, all the pixels in the white or black background of
an image). Such weights cause a higher sensitivity to noise for a given network
accuracy. This problem also exists in RBFs, which give the same (unit) weight
to all inputs, therefore it is often less critical than in MLPs, yet still present.

In practice it would be desirable to have lower weight values associated
with all those inputs which are less significant for the classification purpose.
This is perhaps the major reason for the development of the Weighted Radial
Basis Functions algorithm (WRBFs) [0] described below. WRBF's also solve
other drawbacks of traditional neural algorithms, therefore provide improved
classification performance, as described in section 3.

2. Weighted Radial Basis Functions

This section briefly describes the WRBF algorithm and shows that other neural
and fuzzy algorithms are just sub-cases. It can also be used as a neuro-fuzzy
unification algorithm [0, 0].

A WRBEF neuron is associated with a set of parameters: an order n € R,
defining the neuron’s meiric; a weight vector W7, deriving from the weight
vector of MLPs; a center vector ci , deriving from the center vector of RBFs;
a bias ©7, deriving from MLPs; an activation function F (z), common to both
types of neurons. The mathematical model of a WRBF neuron of order n is:

y = HE® (X’;éf,vfff',ef) Ap ((Zm(mi —cﬁ)-w{) +ef) (1)

where the distance function Dy(-) is given by:
(2 —cl) forn=0

]

A
Du(zi —¢;) = , (2)
jz; —c|™ forn#0
and F (z) is a generic activation function, although in most cases monotonic

functions are used, such as [0]:

Frnine™ /7 4 Foayet#/7 (generalized sigmoid)
e
F(z) = e~z/7 4 etz g ! (3)

Frin + (Frmax — Fmin)t’flz/ﬂm (generalized ezponential)

20



ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 19-26

where 7 is an appropriate width (normalization) factor. Many neural and fuzzy
algorithms can be re-conduced to WRBF:

e an MLP neuron is identical to a WRBF neuron or order 0, provided
that C7 = 0, and F (z) is a generalized sigmoid. It is worth noting that
introducing an additional vector C7 into MLPs is equivalent to adding
a bias —c! to each input z;. This reduces a drawback of most back-
propagation algorithms, which cannot correct weights connected to inputs
which are zero (or very small).

e an RBF neuron is identical to a WRBF neuron of order n (typically,
n = 2), provided that Wi =1,and F (2) is a generalized exponential
with m = 1. Note that multiplying each distance component |z; —¢] |* by
a factor w; both solves the dimensional problem and produces helliptical
decision boundaries, which may give better performance than spherical
ones.

o WRBEF neurons can also be made identical to several types of fuzzy rules
by properly choosing their parameters [0].

2.1. Generalized learning rule

A generalized learning rule has also been developed for the WRBF algorithm.
It is based on the gradient descent method, which delta rules [0] are based
on. It can be shown [0] that, applying gradient descent methods to WRBF
neurons includes the delta, back-propagation, and Kohonen’s self-organizing,
as sub-cases.

By applying the concept of gradient descent of a quadratic error function to
the weight vector W7, the center vector C7, and the bias ©7 , the generalized
learning rule for WRBF neurons becomes (for n # 0):

sl = (7 =) ) p o ()
A®T = —n@-(y’—tf)~d%z(z) (5)

ACZ: — nc.(yi_tj).d%z(z).wg.[’D(n_l)(mi—cg)-sgn(mi—cg)] (6)

5:&5

, g ) . :

Y - ) [y i ) sntes — )

g
where nw, ¢, and ne are appropriate learning coefficients, while F(2) is the
activation function (see (3)). The last formula applies only to multi-layer net-
works and provides the correction vector to be back-propagated [0] (generalized
back-propagation algorithm).

A particular case holds for n = 0: formulae (4) and (5) remain the same
while, in (6) and (7), the terms between square brackets are removed. See [0]
for further details on the unsupervised generalized learning rule.
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2.2. Weight and Center Initialization

This section discusses on a pre-training initialization of weights W and centers
ci , which has proven useful in several pattern classification applications (see,
for instance section 3.). Initialization provides weight and center values which
are often close enough to the optimal value, therefore the following learning
phase is much shorter. Initialization alone is often sufficient to get a working
(although non-optimal) classifier, as shown in plots 1 and 2. Note that the ini-
tialization proposed here is not applicable to all cases, and is not a fundamental
step of the WRBF algorithm. A random weight initialization (or other types
of initialization) may perform better in several other applications. The major
advantage of the proposed method is its simplicity and ease of implementation.

The initialization algorithm applies primarily to pattern classifiers imple-
mented as two-layer WRBFs. In the first layer, a group of M neurons is
associated with each class, while the second layer has just one neuron per
class, connected only to the outputs of neurons of the same class. Initialization
applies to the first layer, as in the second layer weights are initially set to 1.

The training set 7 is first subdivided into M subsets P’ per each class.
A simple though effective method to subdivide patterns is composed of two
phases: in the first phase, the first pattern is assigned to the first subset, then
the pattern which is farthest from the first one (under the metric (2)) is assigned
to the second subset, then the pattern which is farthest away from the first two
is assigned to the third, and so on, until all the subsets contain one pattern.
Thei, in the second phase, each one of the remaining patterns is assigned to
the subset which contains the patterns closest to it.

After all patterns have been subdivided, WRBF centers and weights are
initialized with the following values:

o 1 o

¢l = —— X, 8
N(p])p;j 14 ()

o o(T) (-5

= T‘U(T)wm'e( ) (®)

where P? and N(P?) are the j-th subset and the corresponding number of
elements, respectively, while o;(P) (respectively, o(P)) is the standard devia-
tion of the i-th input (respectively, of all the inputs) in the set P, and p and
T are appropriate parameters. When p = 0, all weight matrices Wi become
identical to each other, therefore reducing classification time (by substituting
T, = /w;ini, c;j = /wiel and w] = 1into (1)).

For each subset, the associated location center G’ will contain the average
of the patterns of the subset, which is often a vector roughly representative
of the subset elements. Initialization assigns a larger weight to those pixels
which have a lower intra-class standard deviation o;(P?), and therefore are
more significant for the classification task, and less to the others, as expected.
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3. Performance Comparison

This section compares the performance of two cases of the WRBF algorithms
with more traditional MLPs and RBFs. Performance are evaluated on a non-
trivial practical example, which has been tested on a commercially available
system. The system has to classify paper documents according to a colored logo
printed on a well known area of the document. The logo is acquired through
a color camera, sampled in four different areas of the image (windows), 32
samples per each window, three colors per sample, for a total of 384 input
elements, 256 gray levels per each input. Documents must be classified into 20
different classes. Training and test sets are composed of 364 and 727 patterns,
respectively (namely about 18 and 36 pattern per class, respectively). Initial-
izations, training and simulations have all been executed on the FANNLAB
neuro-fuzzy simulator.

Plots 1 to b compare the performance of four networks: an MLP, an RBF,
and two WRBFs, of order 1 and 2, respectively. All the networks use only 96
inputs (only one of the four windows is used) and have exactly the same size,
namely one layer, 96 inputs, 20 neurons. Note that, as all input patterns have
approximately the same amplitude (f ~ const), the linear separation prob-
lem typical of MLPs does not cause problems [0], therefore a one-layer MLP
is sufficient (although it may have poorer performance). The MLP uses a sig-
moidal activation function, while RBF and the two WRBF's use an exponential
activation function. In both cases the outputs range between 0 and 1.

During recognition, the networks accepts a pattern iff one and only one
output is higher than a given upper decision threshold ¢, while all the other
outputs are below a lower deciston threshold ¢r. The network rejects any other
pattern. The thresholds have been chosen to have no errors, as the cost of errors
in the proposed application is very high.

Some performance comparisons are based on a noise sensitivity plot, which
expresses in graphical form the rejection rate versus the standard deviation oy,
of the white Gaussian noise added to each input.

Plot 1 compares the performance of three networks (MLP is excluded),
which have been initialized as described in section 2.2., but not trained. The
decision thresholds are ¢y = 0.2, ¢ = 0.5, while p = 1 and v = 1. Initializa-
tion performs well for both WRBF2 and RBF, while it shows poor performance
with WRBF1.

Plot 2 is similar to plot 1 but applies to the same networks after training
(MLP is trained starting from random initial values). Performance of the three
networks improve significantly within less than 100 training epochs (sometimes
10-20 epochs are enough), while MLP requires a much longer and more crit-
ical training phase (often more than 1000 epochs). WRBF2 and MLP show
comparable performance, while RBF show the worst performance, and MLP
suffers from a much slower training phase.

Plot 3 shows rejection rate versus decision thresholds o, and . When oy,
and oz approach to each other the error rate (not shown on the plot) increases.

Plot 4 shows rejection rate versus normalized image brightness. All net-

23



ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 19-26

works except MLP are rather sensitive to brightness variations of more than
2-5%. Sensitivity is reduced significantly by removing from the input patterns
the average image brightness. This gives the performance shown in plot 5.

Plot 6 is similar to plot 2 but applies to the four networks with all 384 inputs
(namely, all the four windows are used). In this case network architecture is
more complex: three layers, 384 inputs, 240, 120 hidden units and 20 outputs.

It can be seen that WRBF2 and MLP show comparable performance, while
RBF show the worst performance. In many cases RBF reject about five times
as many pattern as a WRBF2 and an MLP, while WRBF1 rejects about twice
as many patterns as a WRBF2. Error rate is zero in all cases.

WRBFs have the advantage with respect to MLPs of requiring a much faster
training phase, especially when updating the training set by modifying the pat-
terns of only one or few classes. This advantage becomes even more significant
when network size increases, as training time of MLPs increase significantly,
while training time of WRBFs may remains constant. In many applications,
training can be avoided.

On the other hand, WRBF's have the drawback of requiring more memory
for weight/center storage, and one more operation per each synapsis. The
effects of this drawback can be reduced significantly by properly storing weight
matrices and implementing the algorithm (see an example in section 2.2.).
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