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From retinal circuits to motion processing: a
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Abstract. A new energy-based algorithm for motion estimation is presented. It
uses wide-band spatiotemporal filters (with non-separable variables) inspired
from neuromorphic circuits which are simple, robust, noise resistant and easily
implementable in analogue VLSI circuits for real-time on-chip estimation of
optical flow-field. Results are presented for one and two dimensional motion,
including an original solution to the aperture problem.

1. Introduction

Recently, several algorithms for motion estimation that can be implemented with
VLST circuits have been proposed [1]. They generally use correlation- or gradient-
based methods. In this paper we present a new algorithm that belongs to the family of
energy-based methods and that can also be implemented in analogue VLSI circuits.
On the contrary of the narrow-band spatiotemporal Gabor-type wavelets normally
used in energy-based methods [2, 3, 4] that require a heavy computational load, we
propose here a new approach: it consists of wide-band velocity-tuned spatiotemporal
filters inspired from neuromorphic circuits [5]. On one hand, this kind of circuits can
be efficiently implemented and are robust with respect to mismatching tolerances. On
the other hand, energy-based methods are known to be robust with respect to noise in
the input signal. In this paper we present the one dimensional motion for seek of
clarity, and we give the extension to the 2-D case, with an original solution to the
aperture problem.

2. Model of translational motion and motion sensitive filters

a)
Fig. 1. a) Motion in the frequency domain, and its processing by b) a bank of numerous narrow-
band Gabor-type filters (nine filters), ¢) our bank of wide-band filters (three filters).

The basic property of uniform motion is that the energy is contained, in the
spatiotemporal-frequency domain, in a plane which orientation depends on motion
velocity and direction. In the case of one-dimensional motion, the spatio-(x) temporal-
() intensity function of a moving pattern with velocity v is given by i(x,f)=i(x-vf), its
Fourier transform being I(fy,fy)=I(f;).8(fr+v.fy), as illustrated in figure 1.a. The energy
plane is determined by the equation fi+v.f,=0. Estimating the velocity will correspond
to the problem of detecting the orientation of the energy plane in the spatiotemporal-
frequency domain. In this approach, classical methods generally use a bank of
narrow-band spatiotemporal filters to sample the spatiotemporal frequency domain.
(figure 1.b). Each filter is tuned to some velocity and centred on some spatial
frequency. The output of such a filter will be maximum for a moving pattern which
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spectrum is contained inside of the pass band of the filter. For the one dimensional
case, with the method proposed by Heeger [2] it is necessary to use at least nine
filters, as shown in figure 1b. The technique we describe in this paper uses wide-band
velocity-tuned spatiotemporal filters (figure Ic) inspired from neuromorphic circuits.
It interestingly reduces the number of filters to be used to sample the spatiotemporal
frequency domain, in the 1-D case, only three filters are necessary.

3. Neuromorphic motion sensor

Several neural networks with motion selectivity properties have been proposed in the
literature [6, 7]. The one we propose here, figure 2.a, uses both excitatory and
inhibitory lateral connections in order to provide motion selectivity (the local
feedback connection takes into account the temporal behaviour, as it will be seen).
The neural network will be analysed from a signal processing point of view by using
an electronic circuit representation which is inspired from neuromorphic circuits [5].
The use of both inhibitory and excitatory connections will permit to obtain a simple
circuit allowing a full control of all the filter parameters such as maximum spatial
bandwidth, preferred direction and velocity selectivity.

- Preferred direction

inhibitory

a)
Fig. 2-. a) Neural network for motion estimation by temporal units with excitatory & inhibitory
synapses. b) Equivalent neuromorphic circuit temporally causal and possibly causal/anti causal
spatial behaviour. ¢) Example of spatio-temporal transfer function (compare with fig 1a,c).

Figure 2.b shows the neuromorphic circuit used to model the neural network. The
input of the neurone is figured by the generator e(x,f) and the synaptic resistance r. Its
output state s(x,) is the voltage across a capacitor C figuring the membrane capacitor,
which will evolve continuously with time. The lateral “unidirectional” connections are
composed of a gain (a or b, figuring synaptic coefficients that would be positive for
the excitatory connections and negative for the inhibitory ones) and a resistance R
figuring the corresponding synaptic resistance. This model is easily described by
means of its Fourier analysis in spatial and temporal frequencies. The filter is discrete
in space but continuous in time, and its differential difference equation is obtained by
applying the Kirchoff’s current law to each node:

e(x,t)=s(x,1)-[1+20] - ct[a-s(x = Ax,t) + b s(x+ Ax, 1) |+ T ds(x, 1) /It
e(x,t) is the input and s(x,f) is the output. Ax is the spacing between pixels. The other
circuit parameters are: o=r/R and 7=r- C. By applying the Fourier transforms in spatial
frequencies f, and temporal frequencies f;, we can write:

1
Hfe ) 1+a:[2 = (a+b)cos(2nf Ax)|+ jT|27f, + &/ T+ (a—b) sin(2 7if  Ax)]
When a+b>0 this filter corresponds to a low-pass wide-band spatiotemporal filter.
Figure 2.c shows the shape of the module of this function which complies with figure
1.c if sin(2mfydx)=2nfyAx. It can be easily shown that the spatiotemporal stability of
the filter is assured if the condition 1a+b <2+1/e is verified [8]. For better
understanding, one can use the low spatial frequencies approximation: cos(x)=1-x2/2
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and sin(x)=x. Considering Ax=1 (velocity will be given in pixels per second), the
transfer function can be approximated by the expression:

H(fe )= H,[[1+2£2 | AB; + j2(f, +v,£,)/AB,] M
Where: H,=1/[1+0(2-a-b)], which is the gain for low frequencies, and

AB 1 \/1+a[2—(a+b)]
a2 a+b

For a pattern moving with velocity v, the energy is contained in the frequencies given
by the equation fy+v,f,=0, therefore the complex term in the denominator of (1) will
be zero for the spatiotemporal frequencies that contain the input energy. Therefore,
ABy is the equivalent spatial bandwidth of the filter for a pattern moving with velocity
vo. For other input velocities the equivalent spatial bandwidth of the filter will be
smaller. AB; is a parameter that will determine the velocity selectivity of the filter. For
numerical simulation we use a+b=2 which assures stability and allows to obtain very
simple relations between the filter parameters and the components of the circuit.
These relations are: H,=1, a=1/(2(RAB,)?), =AB,JABy 2)'2, a=1+tv,/(2cX) and
b=2-a. As we can see, all the parameters (ABy, AB; and v,) can be chosen
independently with the only restriction of AB,<0.5 in order to be in the linear
approximation of sin(2mfyAx). This would not be possible when considering only
excitatory connections. In order to study the behaviour of the network in the time
domain we will consider as input signal, an unit impulse with velocity v and
amplitude A: A-8(x-vt). The Fourier transform of such a signal is a Dirac plane
A-3(fr+vfy). Therefore, the output will be the product A-H(f,.f;)-8(f;+v-f). This can
also be written as A'H(fy,-v'fx):0(fi+vfy). This is equivalent to a purely spatial filter
which is function of velocity G(fy)=H(fy,-v'fy). Then, the output of the filter is the
signal A g(x-v-r) where g(x) is the inverse Fourier transform of G(f;). Using expression
(1) and with p=2mjf; (p: Laplace variable) we can write:

, AB, =%[1+ a[2—(a+b)]] and v, =1(ar—_b)

2 2
2 ~ABx __ B-P
p*-2-m(v=v,)-AB2/AB; - p-2.7% - AB>  (p—R)-(p+P)

Py and P, are positive numbers depending on filter parameters. The function can be
decomposed in two parts, one causal (P,) and one anti causal (P,). Applying the
inverse generalised Laplace transform we obtain the function:

G(p)=

(x) = - ABy [\2 ) HF it x<o ‘—l Tnput I—»
g ( )2 e_P2 X if x>0 Preferred direction Non-preferred direction
vV—v -
1+2- o) A Output =

Figure at the right-hand side shows the spatial output of the filter for two directions of
motion. The output amplitude is higher when motion is in the preferred direction. The
energy of the output can be calculated as:

A% .- AB,

T 2
E, =A% [|G(f, )] dx = -
— 245\/”2(”;”3—)— o
AV
Where the velocity selectivity AV is calculated as AV=2AB,/ABy. It shows the

dependence of the energy on the velocity (figure): the output energy is maximum for
motion at the preferred velocity (v,). This expression will be also valid for input
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patterns with white energy spectrum. This complies with the pre-processing function
of the retina which is known to whiten the input signals [9] as we will discuss later.

4. Estimation of motion

As the energy is a function of velocity, it can be used for motion estimation. However,
the output energy is also a function of input energy, therefore, we need to combine the
outputs of several filters tuned to different velocities in order to have a measurement
of motion, independently of input energy. If we use two filters tuned to opposite
directions (velocities v, and -v,,), for a moving impulse or for a pattern with white
spectrum, we can write using the energy expression given above:

1/EEV —1/E‘2, =K-8-v-v,/AV?
Where K is a constant depending on filter parameters and input energy. This
expression, linear for the input velocity, remains dependent on the input energy, and

needs to be normalised. Using a third filter tuned to null velocity (spatially
symmetric) with output energy Eg, we can obtain the expression:

1/EEV +1/E‘2, ~2/E} =K -4y /AV?
which doesn’t depend on input velocity. Therefore, the velocity v can be calculated as:
2 2
=Yo EVo - E—Vo
T 2 L2 2 2 2
2 Ej +E2, -2-Ej -E%, [E}
This formula is valid for all velocities, the limit being given by the existing noise.
Because this expression doesn’t depend on filter parameters, it is not necessary to
have filters very selective to velocity. On the contrary, filters with low selectivity will
behave better with respect to noise. For all tested sequences we obtain good results
with AV=vy,,. Figs. 1.c and 2.c show the shape of these filters in the frequency domain.

1%

@

5. Application to "real" 1-D images

When dealing with real images, several problems arise. They come from i) the input,
with noise and spatial aliasing (and temporal aliasing for time discretised sequences in
numerical simulations), and ii) the motion estimation algorithm itself. The most
important one is that input signals never satisfy a white spectrum condition.

Photoreceptors layer

[ ]

Horizontal cells layer

Bipolar cells layer

Fig. 3. Model of the retina and the module of its transfer function [10].

Atick [9] showed that natural images have roughly a 1/f spectrum that can be
compensated by some pre-filtering of the input signal, just as the one realised by the
retina in the visual system. Figure 3 shows the neuromorphic model of the retina and
the shape of its transfer function [10]: in the bandwidth of the input signal, the retina
behaves as a high pass filter which will compensate for the 1/f spectrum of the input
signal. More, for high spatiotemporal frequencies it is low pass and reduces noise and
aliasing. The output signal of our model of retina can now be applied to the three
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velocity filters, 1n parallel as said in section 4: velocily is estimated from the
combination of their output energies. In order to have local estimations of velocity we
must integrate these energies only over a limited region, at the expense of accuracy.
And in order to meet accuracy, we must integrate over large regions, at the expense of
badly localised smooth velocity fields. In order to respect motion discontinuities we
must use small integration regions, at the expense of biased velocity estimates.
Integration is provided by a regularising network similar to that of the photoreceptor
layer applied to the square of the outputs of the velocity-tuned filters.
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by Input
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Fig. 4. One dimensional simulation results for the estimationof motion.

Fig. 4 shows the simulation results on a real sequence and the processing architecture.
The parameters of the velocity-tuned filters are v,=3, AV=3 and AB,=0.15. The one
dimensional input sequence is issued from a two dimensional one by taking only one
line of receptors (a). The sequence consists in two vehicles moving in opposite
directions. The input signal (b) is firstly pre-filtered by the retina. The output signal
(c) has a zero mean value and has a wider bandwidth than the input signal. The output
of the retina is applied to the three selective filters. Motion in the rightward direction
(vehicle at left-hand side) produces a larger response in the filter tuned for rightward
motion. The right-hand side vehicle moving leftward produces the largest output in
the leftward motion tuned filter. The figure shows the squared output of the three
filters before integration (d, ¢ and f). Once local energy is computed we can use
expression (2) to estimate the velocity at each pixel (g and h).

6. Formulas for the two-dimensional case

The hereabove presented results can be extended for two spatial dimensions, however,
some new difficulty appears: the one of the aperture problem. In order to simplify
expressions we will use vector notations: the position will be defined by the vector
x={x,y} and the spatial frequencies by the vector fg ={fx,f_\. . The velocity
vectors for a filter (vq) and for the image (v) are respectively defined by:

Vo = {Vxo, Vyo | = {0 cos(@), vy sin(@)} and v ={vy, v, } = {vcos(B),vsin(B)}

v, and o are the module and direction of the velocity-tuned filter, v and f3: same for
the moving pattern.

6. 1. Transfer function

The neuromorphic circuit showed in figure 2.b can be extended to two dimensions by
connecting each node to its four neighbours with both excitatory and inhibitory
connections. The synaptic coefficients (¢ and b in the one dimensional model) are ay
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and by, for the horizontal connections and ay and by for the vertical ones. The same
analysis done previously can be extended to two dimensions. The low spatial
frequencies approximation of the transfer function for a filter tuned to velocity v,
becomes:

H(f, f)= 1/[(1+2|fs|2/ABs2)+j2(ft +vonS)/AB,]

with y=r/R=1/(2(nAB;)?), and 7=r C=AB,/AB; (22, ax—1+rvocos(a)/(2y) bx=2-ay,
ay_1+'cvosm(oc)/(2\() and by—2—ay AB; and AB, are defined in the same way as AB,
and AB, in the one dimensional case.

6. 2. Velocity estimation for a moving impulse

As in the one dimensional case, we will study the output of the filter when the input
signal is a moving impulse and we will derive the way in which the velocity vector
can be estimated. We model the input signal as i(x,t) = 8(x-v-t)

=8(x-v cos(B) t, y-v-sin(B)-t), its Fourier transform is: Ifs, fp) = 8(fp+v! fs)
=3(fi+v.cos(B)f+v.sin(B) fy)- The frequency spectrum of the filter's output is:
O, fy) = H(,, fp) I, ft) = H(f;, I fs) 8(ft+v fs). This means that it can be
considered as a spatial pattern moving at velocity v: O(fs, f;) = G (fg) 8(ft+v fs).
Applying the inverse Fourier transform, we obtain the response of the filter: o(x,t) =

gv(x-v t) the energy of which writes:
2 2

E, = [[lg,(x)| dx =H|H (£, —v"%, ) n/\j1+ av? +Av2)/Av§
With: Av, =V cos(a) - veos(B), Avy =v, sin(a)—vsin(B), Av, =2AB, / ABg
This express10n is an approx1mat10n 1t can be verified numerlcally that the error
remains within 5%. Here again, the output energy will be maximum when the input
impulse moves with the velocity (vq) to which the filter is tuned. Using again three
wide-band filters tuned to velocities 0, vgp Lo andvg ZLo+n (opposite direction), we
can estimate the component of the input velocity in the direction of the angle o by
combining the output energies in the same manner as in the 1-D case:

Yo Egz - Egzﬂr
2 Egt +Egz+7z —2~E§ 'Egzwz/E\%—
Figure 5.a shows the meaning of this result for a moving dot. It is also valid when the
input consists in a highly textured moving pattern with a white spectrum. In these
situations, motion can be determined without any ambiguity even when the estimation
is realised with local integration. With real images, as previously said, a prefiltering
will be necessary in order to be near to the white spectrum condition.

=v-cos(a—f) 3)

6. 3. Velocity estimation for a moving contour

When the input signal is highly oriented (as in the case of a long contour), the
condition of white spectrum will not be verified in any direction and the previous
results will not hold. It is the well known "aperture problem" and then, with local
image analysis, we will have access only to the normal component v of velocity. This
situation doesn’t exist in the one dimensional case. In order to study the filter's
response in this situation we will consider as input signal an infinitely long moving
contour: i(x,H=8(xTu,-vt)=8(x-cos(B)+y-sin(B)-v-r) where u, is an unitary vector
normal to the contour, v is the module of the normal velocity and J is the angle
between the contour and the vertical axis (y) of the image. In this case, it can be
shown [8] that formula (3) turns to:

2 2
Yo Ey —Eyiq ~ v
2 EX+E%, . -2-E: E..[E’, cos(a-p)

“4)
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The result is shown graphically in figure 5.b. This result and the previous one show
that the estimation of velocity will be different with and without the aperture problem.

7. Two-Dimensional motion estimation and the aperture problem

In the general 2-D case, velocity estimation requires at least two sets of 3 filters tuned
to two orthogonal velocity vectors (figure 5.a bold). Because the 0 velocity has no
orientation, this leads to a bank of 5 filters (2 for velocities +v,, and -V, in the
horizontal direction, 2 for velocities +v,, and -v, in the vertical direction, and one for
velocity 0). We will show that this is not sufficient because of the aperture problem. 1/
We have said that for wide-band signals (dots or highly textured objects) the region of
integration should be restricted in order to respect motion discontinuities. In this case,
the result of section 6.2. will apply in order to estimate the velocity vector. 2/
However, in presence of the aperture problem, a large integration region is required,
though producing poorly localised velocity fields. In this case, with small integration
regions, the results of section 6.3 would apply.

Fig. 5. Velocity components. Each line corresponds to the estimation of the velocity component
in one direction. a) For a moving impulsion, and b) for a moving contour. (see text).

But, the problem we are faced now is the one of determining which case (aperture
problem or not) is present at any location of the processed image. We propose an
original method to solve it, by the use of two other sets of filters, shifted of 45° with
respect to the previous ones. Fig. 5 shows the complete set of velocity tuned filters: in
the directions of 0, 45, 90, 135°, and the estimated velocities in each case: we see that,
only for the aperture problem, the affixes of the estimated vectors lie on a straight line
which is parallel to the moving contour. This is a mean to determine which case is
present at the current pixel location. Moreover, using four filters can help in
~exploiting the redundancy for noise reduction. The coherence between all the
measurements can be used as a confidence value

Fig. 6. a) Small region of integration and the aperture problem, b) large region of integration.

Figure 6 shows the results of simulation with a moving circumference. When using a
small integration region the aperture problem is present and the algorithm produces
normal-velocity estimates (fig. 6.a), however, when using an integration region of the
size of the circle, the algorithm produces the real velocity estimation (fig. 6.b).
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8. Results with a real sequence of images

Figure 7 shows the simulation results for a real sequence taken by a static camera. The
scene contains four moving objects, one pedestrian on the upper-left side of the
image, a taxi in the centre and two other vehicles at the low right-hand and left-hand
sides of the image. The figure shows a) the input image, b) the output of the retina and
c) the estimated velocity field. The estimation has been done with only five wide-band
spatiotemporal filters. The integration region is large enough in order to prevent the
aperture problem. This algorithm has been tested with other sequences providing
results with the same accuracy as methods using Gabor-type filters [2] but, with a
dramatic reduction of the complexity of the algorithm (5 filters instead of the 36 used
in the method proposed by Heeger). It allows a fast computation: 1 image (2562) per
second for retina filtering and velocity estimation on a SUN UltraSparc work-station.

Ul e g e

b) - S o)l e

Fig. 7. Simulation results. a) Input sequence, bj-_output of the retina and ¢) velocity field.

9. Discussion

In this paper we have presented a new energy-based algorithm for motion estimation
based on wide-band spatiotemporal filters that are inspired from neuromorphic
circuits. The proposed architecture is simpler than other methods which use narrow-
band Gabor-type wavelets, it is robust with respect to input and structural noise. The
simplicity of the filters used here allows one to envisage their implementation in
analogue VLSI circuits for real-time on-chip estimation of optical flow-field.
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