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Abstract

We show in a very general framework the a.s convergence of the Kohonen
algorithm in dimension 1 (units and stimuli) after self-organization when the
learning rate decreases to 0 in a suitable way. The main assumption is a log-
concavity of the stimuli distribution, but this includes all the usual probability
distributions (uniform, exponential, gamma distribution with parameter > 1,

)

1 Introduction.

Since 1982, when T. Kohonen presented his self-organizing algorithm (see [9],[10]),
the first rigorous proof of a.s. convergence has been obtained in the uniformly dis-
tributed case and a 1-dimensional array of units with the two nearest neighbors (see
[2],[3](hum!)). In [5], this result was extended to a more general class of decreasing
enough neighborhood functions, but still when the stimuli are uniformly distributed.
Furthermore, a proof of conditional convergence (in the Kushner& Clark sense) was
obtained for the same class of neighborhood functions under a In-concavity assump-
tion on the stimuli distribution. In the present paper, gathering all the previous
results and calling upon a strong result by M. Hirsch on cooperative dynamical sys-
tems we establish the a.s. convergence toward a unique equilibrium point under a the
same assumption on the distribution and a more general one on the neighborhood
functions.
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First we shortly recall the basic definitions and known results about the Kohonen
one-dimensional algorithm.

The units are identified to the set {1,2,---,n}. ¢ denotes the neighborhood
function. It satisfies : ¢(0) := 1, o(k) = o(—k), o non increasing. The stimuli
wh, t>1 are i.i.d., [0, 1]-valued and have a continuous distribution p. A weight is
associated to each unit and X' := (X});<;<, denotes the weight vector at time ¢.
The X?!'s are supposed [0, 1]-valued too. Let X°:=(z;)1<i<n the initial weights. At
time ¢ + 1 the algorithm is recursively defined in two phases by:

(i) Competitive phase:

computation of the winning unit ! := i(w**!, X*) = argmin |w'*! — X{|.
kel

(ii) Cooperative phase:
Vie{1,2,--,n}, X =X!—eo( - 5)(X;—w)

where (¢;);>) 15 a sequence of |0, 1[-valued real numbers. ¢, is the learning rate at
time .

(X*)en is a Markov chain — homogeneous if ¢, = ¢ > 0 -~ and, if z € D := {z €
[0,1]"/z; # z; if i # j} then, Py-a.s., X* € D for every t € IN. Thus, as soon as
X% e D a.s., the algorithm is a.s. well defined.

2 Previous results

Let Fri={z €{0,1]",0<z1 <z3< - <z, <1} and F; ={z € [0,1]*,0 <z, <
Tpyr < -+ <2y <1}
e Self-organization.

- if o(k):=1gk <1y (see [3]), or if k — o(k) is non decreasing decreasing (and non
negative), then F;} and F,; are absorbing sets (see [4], [5]). When the learning rate
is constant, &; = €, the entering time of X' in F,, := F;f U F, is P,-a.s. finite and
has an exponential moment, uniformly in z € [0, 1]* (see [3] when p:=U([0,1]), [2]
for more general distributions p).

e Convergence.
-if ¥,6, = +o0 and T, €2 < +o0 (decreasing learning rate) and if o satisfies
(H,) = there exists ko < 251 s.t. o(ko + 1) < o (ko)
then :
(a) the mean function of the algorithm, —h (see (??) below), can be extended to a
continuous function on the closure - of F; whenever y weights no single point. If

u has a positive density f, there is at least one equilibrium point z* inside F,} and
any equilibrium points actually lies inside F}.
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, _ ] o either a strictly log-concave density f on |0, 1|
(b) if p fulfills ['_{ o or a log-concave density f on ]0,1[ s.t. f(0.)+ f(1.)>0
then h is Lipschitz and all the equilibrium points z* are stable (i.e. have a stable
attracting area).
(¢) if u=U([0,1]), h has a unique equilibrium point z* in F}} and X* — z* IP,-a.s.
Claim (a) is established under the optimal assumption (H,) in [13]. Claims (b)
and (c¢) can be found in [5] under a (slightly) more restrictive assumption than (H,).

Nevertheless it can be straightforwardly extended whenever (a) is established under
(Ho)-

3 A.s.-convergence toward a unique equilibrium
point.

We proceed in three steps:

— first we prove that there is a unique equilibrium point z* of the O.D.E © =
—h(z, o),

— then we verify the assumptions of Hirsch’s Theorem about the strongly mono-
tone dynamical systems,

— and finally we apply a slightly improved version of the Kushner & Clark The-
orem to conclude.

We begin by writing the O.D.E.. It reads :

& = —hz,o)
with  h(z,0) = 3 olk—il) /~ (@ - w)p(dw)
k=1 Sk, Tht1]
~ ~ Tk + Tp—1 ~ +
where we set : 21=0., Tr=—— 2Z5k<n, ITpa=1".

2

We have the following results, that where partially (items (4), (44)) “guessed” in
[13].

Proposition 1 (i) The dynamical system & = —h(z) is cooperative on F} (i.e.
the non diagonal elements of Vh(zx) are non positive).

(i1) The matrices Vh(z) are irreducible on F.
(i11) There is a unique equilibrium point in Ff.

(iv) The set of the limiting values of a trajectory starting from zo € F;: 1s @ compact
connected set of Ff.
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We use the Theorem 0.5 of [8] that says that all the trajectories of a strongly
monotone dynamical system on a set X, with compact orbit closures in the interior
of X and a unique equilibrium point, converge to it. From this we have :

Corollary 2 All the trajectories of the O.D.E. & = —h(z) starting in F: converge
to xz*.

We now state a simplified version of an improved Kushner & Clark’s result (see e.g.

(1], [A},[7]).

Theorem 3 Let X**' = X'+e, ) [~h(X*)+AM™] be a stochastic algorithm taking
its values in a compact set K of R". Assume that h is Lipshitz and that AM! s
the sequence of L-bounded increments of a martingale for g > 2. If Y18 = +00,

Y1 EEHQ/Q) < +oo and if the flow of the O.D.E. & = —h(z) converges (on K) to
the unique equilibrium point x* of h, assumed to be stable in the K& C sense, then

Xt converges IP-x a.s. to z*.
Then, it derives from the above Corollary and Theorem 3, the result
Theorem 4 If pu satisfies condition L, if o satisfies (H,), if X° € F: then X?

) L . A et
converges IP; a.s. to the unique equilibrium point =*, unique zero of h in F, .

4 Sketch of proofs

We mention here how to prove the four items of Proposition 1.
(i) In [5] it is shown that, setting f(0_)= f(1.):=0:

Vze Fl, Vi#j%(z) = "”H1_jg_a(”—j”(au—fj)f(fj)

] olimi)—olfi-1-3), . .._
B (fcz - $j+1)f($j+1)

+

which is clearly non positive.

(ii) We assume o(ko) < o(ko + 1) for some ko< 251, Let A the matrix
A= laghcijon, = lo(li+1- 7)) = o(li = j])|12<s<n-

It is obvious that the irreducibility of Vh(z) and of the matrix B = [by]i<i j<n,
bij = aij + aij1 (@ing1 = 0), are equivalent. We just note that the “diagonal”
a5, k+ £ = of A is made of positive elements. This prove the result since now B
has then two consecutive positive “diagonals”.
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(iii) We apply the well known result that follows(see [12]): let V be a C° manifold
with boundary 8V and let f be a C° vector field on V pointing outside V on 9V
and having a finite set of zeros inside V. Then the sum of all the Morse indices of
the zeros of f is equal to the Euler characteristics of V.

F: is homeomorphic to the unit closed disk D,, so its Euler characteristics is 1.
But all the zeros of h have a stable attracting area, hence they all have an index 1.
This proves uniqueness as soon as the vector field —h is pointing outside 9FF. A
straightforward computation this is the case when ¢ is decreasing. In the general
case, uniqueness derives from the implicit function theorem which shows that locally
the equation h(z*,o)=0 defines a function z*:= ¢(0o).

(iv) We prove that the trajectories of £ = —h(z) started in _F—: have no limiting
point on 8F, . To this end, we define for every z € 8F ", the function £(z) equal to
the number of sets of packed components of z. We show that £(z — $h(z)) < £(x).
It follows that the solution z(¢) of the O.D.E lives in F;* for all t>0. It remains to
show that there is no limiting value of the O.D.E on 6?: . By carefully inspecting
the behaviour of the algorithm we prove that it always separates (at least) 2 stuck
components at each iteration when the n-tuple z € 87:: . Thus we deduce that for
the O.D.E the speed of separation is non zero on the compact set B—F—:. Thus the
O.D.E eventually leaves 87: with a bounded below speed which does not allow any
limiting value on 67: :

5 Conclusion.

The result of this paper almost ends the study of the a.s. convergence of the 1-
dimensional Kohonen algorithm (i.e. one-dimensional units and stimuli): most usual
distribution fulfill the log-concavity assumption. The case of higher dimension (even
the simplest i.e. the string in the unit square) turns out to be much more difficult
since we cannot find some organized absorbing set (see [6]) and thus the monotonicity
of the O.D.E certainly fails.
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