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Abstract. This article deals with a transformation of conditional
average estimator, which is utilized in the description of a radial basis
function NN, to the multi-layer perceptron equation. The exact equiva-
lence of both paradigms is demonstrated for a one-dimensional case with
symmetric triangular activation functions. The transformation provides
a simple interpretation of perceptron parameters in terms of statistical
samples of input data.

1. Introduction

Multi-layer perceptrons (MLP) have played a central role in the research of neu-
ral networks.[1] Their study began with the nonlinear and adaptive response
characteristics of neurons which have brought with them many difficulties re-
lated to the understanding of the collective properties of MLP. Consequently,
it was discovered by a cumbersome analysis only recently that MLP is a uni-
versal approximator of relations between input signals.[1,2] But a supervised
training of MLP by back-propagation of errors is time-consuming and does
not provide a simple interpretation of MLP parameters. The inclusion of a
priors information into MLP is also problematic. Many of these problems do
not appear in simulations of radial basis function neural networks (RBFN).
Their structure stems from the representation of empirical probability density
functions of sensory signals in terms of prototype data which can simply be
interpreted statistically.[3,4] An optimal description of relations is in this case
described by a conditional average estimator (CA) which represents a general,
non-linear regression. A priori information can also be included by initializa-
tion of prototypes. A learning rule which was derived from maximum entropy
principle describes a self-organized adaptation of neural receptive fields.[5] The
separation of input signals into independent and dependent variables need not
be done before training, as at MLP, but it can be performed when applying
a trained network. Because of these convenient properties of RBFN our aim
was to explore if it is also more accurate at the modeling of mapping relations.
Here we demonstrate their exact equivalence for a simple one-dimensional case
by showing that the mapping relation of a RBFN can be converted into that
of a MLP. This further indicates how the MLP parameters can be statistically
interepreted.
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2. Transition from RBFN to MLP

The task of both paradigms is a modeling of relations between measured data.
We assume that D sensors provide signals (s1, s, ...,sp) that comprise a vec-
tor x. The modeling is here treated as an estimation of the joint probability
density function (PDF) between components of x. We assume that information
about the probability distribution is obtained by a repetition of measurements
which yield N independent samples {x1,X2,...,xx}. The PDF is then esti-
mated by the expression

N

Je(x) = -]%Zw(x—xn,a) (1)

n=1

Here w(x — x,,0) is a smooth approximation of the delta function, such as a
radially symmetric Gaussian kernel w(x, ¢) = const exp[— || x ||? /2¢'%].[6]
However, the complete PDF need not be stored, but it is sufficient to pre-
serve a set of samples x,,, while the width & can be properly estimated as a
typical distance between neighbor sample points. At continuous measurement
the number of samples increases without limit and there arises a problem with
the finite capacity of the memory in which the data are stored. Neural networks
are comprised of finite numbers of memory cells and therefore we must assume
that the PDF can be represented by a finite number K of prototype vectors

{q1)q2a"'aqK} as
K

£r(0) = 3 3 w(x - s, 0) (2)
k=1

At the modeling of f. the prototypes are first initialized by K samples: {q; =
xy ,for k = 1...K}, which represent a priori given information. These pro-
totypes can be adapted to additional samples x in such a way that a mean
square difference between f. and f, is minimized. The corresponding rule was
derived elsewhere and it describes a self-organized unsupervised learning of
neurons each of which contains one prototype qy.[5]

At an application of adapted PDF the information must be extracted from
prototypes which generally corresponds to some kind of statistical estimation.
In a typical application there is given some partial information, for instance the
first ¢ components of the vector: g = (s1, s3, .., 8;, 0) and the hidden data, which
are to be estimated, are then represented by the vector h = (0, s;41,..,sp).[4]
Here 0 denotes the missing part in a truncated vector. As an optimal estimator
we apply the conditional average [3,4] which can be expressed by prototype
vectors as :

w(g — qi, 0)
h;, where B = 3
klek(g) k x(8) S F wlg - 05,0) (3)

] =

h=

Here the given vector g plays the role of the condition. The basis functions
By (g) are strongly nonlinear and peaked at the truncated vectors qz. They
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represent the measure of similarity between the given vector g and the proto-
types. The CA represents a general non-linear non-parametric regression. It is
important that selection into given and hidden data can be done after training
of the network.

The CA corresponds to a mapping relation g — h which can be realized by
a two layer RBFN.[3] The first layer consists of K neurons. The k-th neuron
obtains the input signal g over synapses described by gz and is excited as
described by the radial basis function Bj(g). The corresponding excitation
signal is then transferred to the neurons of the second layer. The i-th neuron
of this layer has synaptic weights hy; and generates the output h;(g).

In order to obtain a relation with MLP it is instructive to analyze the per-
formance of RBFN in a simple two-dimensional case. We consider the function
y(z) which is described by a set of sample pairs {21, y1; 2, ¥2; . . .; 2, yn } With
constant spacing Az = zj41 — &; for j = 1...N — 1. We further introduce a -
triangular and a piecewise linear sigmoidal basis function :

|z — a4

Bi(z) ={1- N

cofor ziy <& <2ig1; 0.. . elsewhere} (4)
Si(z) ={0for z < z; ; (¢ —x;)/Azfor &; < @ < miy1; 1for 2,41 < 2} (5)

Using them we can represent the function y(z) by straight line segments con-
necting the sample points. The CA can be transformed into MLP expression
by utilizing the relations:

Biy1(z) = Si(2) — Sit1(x) (6)
0 o< Xy
Si(@) = m oy o wic1 < < i (1)

1 . > Ziy2

The result is :

o) = wnbBi(z)+...+yvBn(z) _ 91 Bi(z) - ynBn(z)

YW E TBi(@)+ ...+ Bu(o) Bi(@) +...+By@) " Bi(#)+ ...+ Bn(2)

y1B1(z) ynBn ()

+y2B2(z) + ...+ yv—1Bn_1(z) + (8)

"~ Bi(2) + Ba(x) By_1(z) + Bn(x)
In the denominator of the first and the last terms of this expression just those
basis functions are kept which differ from zero in the region where the basis
function in the numerator also differ from zero. The denominator in the terms
of index 2 to N —1 is 1 because of the overlapping of neighboring basis function.
We insert relations of Eq. (6,7) into Eq.(8) and obtain

N-1
@) =un+ Z(ym — i) Si(z) 9)
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By introducing the parameters Ay, = yip; — yi,¢ = 1/(xip1 — 2;),0; =
z;/(i41 — 2;) and a unique, normalized sigmoidal basis function

S()={0... fore<0;z...for0<z<1;1... forz>1} (10)

we can write Eq.(9) in the form of a two-layer perceptron mapping relation

N-1
§@) =y + Y Ay S(eiw — ;) (11)
i=1
The first layer corresponds to neurons with the synaptic weights ¢; and thresh-
old values ©; while the second layer contains a linear neuron with synaptic
weights Ay; and threshold ;.

The above derivation demonstrates that for the two-dimensional distribu-
tion, the mapping £ — y determined by conditional average is identical with -
the mapping relation of a multi-layer perceptron. However, a difference ap-
pears when the operations needed for the mapping are executed. The opera-
tors involved in both cases are described by different basis functions which are
corresponding to different neurons in the implementation. If the prototypes
are not evenly spaced, then the last equation can still be applied, although the
transition regions will be of different spans. However, in this case the basis
functions B;(x) are no longer symmetric. In applications it is more convenient
to use a Gaussian basis function rather than a triangular one and this yields
in the perceptron expression the function tanh(.). In this case the estimated
function y(z) generally does not run trough the sample points but rather ap-
proximates them by a function having more smooth derivative as the piecewise
linear function. In this case the correspondence between RBFN and MLP is
not exact but approximate. An additional interpretation is needed when the
data are not related by a regular function y(z) but randomly as described by
a joint probability density function f(z,y). In this case, various values of y
can be observed at given x. Evaluation of CA in this case is not problematic
while in the perceptron relation Eq.(11) the value y; must be substituted by
the conditional average of variable y at z;.

The analysis of the correspondence between RBFN and MLP can be ex-
tended to multi-variate mappings. Let us first consider the situation with just
two prototypes q; and q; and Gaussian basis functions. The CA is then de-
scribed by the function

Bi(g) = X lle—gilI* /20°) + by exp(~ [ g ~ g |I* /20%) (12)
exp(— || g — 8 [I* /20°) + exp(- || g — g&; ||* /20?)

We introduce the notation : g; =g§—Ag, g =g+4Ag, hi=h—-Ah, h; =

h + Ah in which overline denotes the average value and 2Ag is the spacing

of the prototypes. If we express the norm by a scalar product and cancel the

term exp[—(|| g —E || + || &g ||?)/20?) in the numerator and denominator,
we obtain the expression:

h(g) = h + Ahtanh [Ag - (g — §)/07] (13)
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in which - denotes the scalar product. In order to obtain the relation between
RBFN and MLP, we introduce a weight vector ¢ = = Ag/o? and a threshold
value © = §- Ag/o? into Eq. (13) and obtain:

h(g) =h+ Ahtanh[c-g— 0] (14)

This expression again describes a two layer perceptron: the first layer is com-
prised of one neuron having the synaptic weights described by the vector ¢ and
the threshold value ©. The second layer is comprised of linear neurons having
synaptic weights Ah; and threshold values A;. A first order approximation of
the mapping expression is

h(g) =h+ AhAg - (g — 8)/o? (15)

This equation represents a linear regression of h on g which runs trough both
prototype points if we put o2 =|| Ag ||?. Tts slope is determined by the
covariance matrix % = AhAgT. However, the nonlinear regression specified in
Eq. (13) follows a linear regression only in the vicinity of point determined by
g and h while it exhibits saturation when g runs from g E over given prototypes
to infinity. The saturation is a consequence of function tanh(.) which is basic
in the modeling of multi-layered perceptron.

The reasoning presented above for a multi-variate case requires additional
explanation when transferred to a situation consisting of many prototypes. Let
us assume that N prototypes with indexes 1...N can be found in the hyper-
sphere of radius approximately ¢ around the given datum g and let these
prototypes be spaced for approximately equal distances. The CA can now be
expressed with leading terms and remainders as

N

S hew(- -l /209

N
2i=1exp(— |l 8 — 8i |I? /20%) + Ou
Here Op and O, represent two remainders which are small in comparison with
the two leading terms. We again introduce the -average value, but now with
respect to N prototypes: g; = g4+ Ag; , hy =h+Ah;fori=1...N. We
obtain the approximate expression:

o~ S, Ahexp[Ag: - (g~ 8)/07)
h(g)=h
(8)=h+ i, explAgs - (g — 8)/0?]

For g in the vicinity of the average value, a linear approximation of exponential
function is applicable which yields

h(g) = (16)

(17)

h(g)=h+— ZAh Agi-(g-8)/0’ (18)

i=]

This expression represents a linear regression of h on g specified by N points.
If we express the matrix by two principal vectors Ah, and Ag, :

¥ = ZAh Agl = Ah,Agy (19)

i=1
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we obtain a simplified expression of the linear regression
h(g) *E+ AhyAg, - (g — B)/0 (20)
which is an approximation of a MLP mapping relation
h(g) = B + Ah, tanh[Ag, - (g — B)/o”] (21)

The parameters of a single neuron in the perceptron expression thus corre-
spond to the principal vectors of the covariance matrix determining a local
regression around the center of several neighboring prototypes. The above ex-
pression shows that the transition from RBFN to MLP can be quite generally
performed. However, in the multi-variate case, the decomposition of CA into a
perceptron mapping is not so simple as in the one-dimensional case because the
interpretation of perceptron parameters goes over local regression determined
by various prototypes surrounding the given datum g.

3. Conclusions

The conditional average representing a regular function y(z) can be exactly de-
composed into multilayer perceptron relation. When there are a small number
of noise corrupted sample data points representing the function the question
of proper smoothing arises. In the case of CA this is done by using symmetric
radial basis functions and increasing their width. However, when the proto-
types are obtained by self-organization, they represent a statistical regularity
and the CA generally does not exhibit statistical fluctuations. In this case,
the proper RBF width is determined by the distance between closest neigh-
bors. The corresponding parameters of the perceptron for the one-dimensional
mapping can then be simply interpreted in terms of prototypes. Because of
the complexity of the back-propagation learning, we have not yet analytically
demonstrated that it yields the same MLP parameters as the decomposition of
the conditional average.
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