ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

Two Neural Network Methods for
Multidimensional Scaling

Michiel C. van Wezel, Joost N. Kok and Walter A. Kosters

Leiden University, Dept. of Mathematics and Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
Email: {michiel, joost, kosters }@wi.leidenuniv.nl

Abstract. Multidimensional scaling (MDS) embeds points in a Euclid-
ean space given only dissimilarity data. Only very recently MDS has
gotten some attention from neural network researchers. We propose two
neural network methods for MDS and evaluate them using both artifi-
cially generated and real data. Training uses two inputs at a time.

1. Introduction

Multidimensional scaling (MDS) is a well-known statistical technique that has
been-applied successfully to a variety of problems in the past. Generally stated,
the classical MDS techniques attempt to find a coordinate representation for
various objects between which only dissimilarities are given. Dissimilarities
between objects are monotonically related to Euclidean distances between the
objects.

Various types of MDS procedures and objective functions have been pre-
sented in the past. Recently MDS also got some attention from neural network
researchers [2, 3]. However, in [3] the focus is on MDS as a dimensionality
reduction technique, and the proposed method still assumes coordinate repre-
sentations for all the objects. In [2] a mean field approach to the MDS problem
is presented, which does not work as intuitively as the methods we will present.
Moreover, excellent results are already obtained with our simpler methods.

In this paper, two new neural network methods for MDS are proposed that
only assume dissiilarities between objects, analogous to the original MDS
formulation (see e.g. [6] or a textbook on MDS, e.g. [1, 5]). The first neural
network is a feedforward neural network trained with a gradient based learning
rule. The second neural network is an unsupervised competitive neural network.
Both networks are tested on both artificial and real data.

The remainder of this paper is structured as follows: in Section 2 the two
neural network methods for MDS are presented: first the feedforward neural
network and next the unsupervised competitive neural network. In Section 3,
experiments on artificially generated data are described. In Section 4, experi-
ments on data from a real world problem are discussed. Finally, directions for
further research and conclusions are given in Section 5.

97

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

2. Description of the Neural Networks

As stated above, two neural network methods are described here. The first one
is a multilayer perceptron trained with a backpropagation-like learning rule.
The second one is an unsupervised competitive neural network.

2.1. Description of the Feedforward Neural Network

The feedforward neural network performs a gradient descent on the cost func-
tion STRESS = E = 3=, . Eg¢, where Eg¢ = (0g¢ — dg¢)?, and the summation
runs over all pairs of objects £, (. Here, o¢¢ represents the known dissimilarity
between object { and object ¢, and d¢¢ represents the distance between object
¢ and object ¢ in the k-dimensional coordinate space. A normalised version
of STRESS is NSTRESS = STRESS/n?, with n equal to the number of ob-
jects to be scaled. In traditional MDS procedures, the dissimilarities o¢¢ are
required to be either proportional or monotonically related to distances. In
the first case, one speaks of “metric” MDS, in the latter case one speaks of
“non-metric” MDS.

To implement this gradient descent in a neural network, we propose an
architecture as in Figure 1. Here, every object we wish to find a coordinate
representation for, is represented by one input neuron. If a certain neuron ¢ in
the input layer is activated, we wish to see the coordinate representation of the
i-th object at the output layer. The network is a feed-forward network with
linear output units.

Object

Input layer

’ Output layer

Coordinate representation

Figure 1: Architecture of a feedforward neural network for MDS.

The network is trained with a gradient descent learning rule in the following
way. Two different objects ¢ and { are selected at random. First, the i-th
object £ is offered to the network, meaning that input node 7 is activated, and
its corresponding output is calculated. Then, the j-th object ¢ is offered to
the network, and its corresponding output is calculated. Now, the distance
between the coordinate representations of these two objects can be computed,
whereas their dissimilarity was already known. Next the weights are updated
according to the learning rule given below, in which the values of the output
units are combined through the distance vector d.

Before we give the learning rule, we introduce some notation. By w;;. we
denote the weight of the connection from input node i to output node j (1 <

98

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

i £ n, the number of input nodes, and 1 < j < k, the number of output
nodes). Let Y;j¢ denote the value of input node i when object £ is presented to
the network (1 < ¢ < n). (Note that this is somewhat more general than the
input behaviour prescribed in the previous paragraph.) Furthermore, let y;,
denote the value of output unit j when object £ is presented to the network
(1 <j<k). For1<j<kwe have:

n
Yite = 3 wij Yie.

i=1

Finally, let 7 be the learning rate. Now the weights can be updated according
to the following learning rule:

O¢e — d,
Aw;; = —n ("2L’€C_dgc““§c—)(yj|£ = Yj1c) (Yie — Yi!()) .

The derivation of this rule is as follows. First note that

k
dec = o| D Wik — viic)?

=1
is the Euclidean distance, and:

OB _ OB Odge _

ad«
6wij - 6d§(8w,-j - 2(0« d.gg)

6wi]

= —2(o¢¢ — dec)Wjie — Yiie) Yije — Yiie) /dec-

If we let Y be 1 if £ is the i-th object, and 0 otherwise, we get the desired
network.

After updating the weights a number of times, the value of STRESS is
computed. Training is stopped if a maximum number of iterations is exceeded
or STRESS drops below a certain threshold. This training procedure, where
two patterns are selected each time the weights are updated, is similar to the
training procedure proposed for the SAMANN network in [4].

2.2. Description of the Unsupervised Neural Network

The unsupervised neural network works simpler and more intuitive than the
feedforward neural network. In the unsupervised neural network, every object
is represented by a neuron. Every neuron has a weight vector with the same
dimensionality as the coordinate representation the object should get. Weight
vector j represents the position of object j in the coordinate space. An example
of an unsupervised competitive MDS neural network is depicted in Figure 2.

99

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

\l/ W W v -
Output layer
Figure 2: Architecture of an unsupervised competitive neural network for MDS.

The training of the neural network now proceeds as follows. Two different
patterns £ and (are selected at random. Next, the distance between the weight
vectors of the neurons corresponding to ¢ and ¢ is calculated (this is d¢¢). This
distance is compared to the known dissimilarity o¢¢, and the weight vectors are
pushed away from each other if d¢¢ < o¢¢, and are pulled towards each other if
d¢¢ > o¢¢. Note that this training scheme is very much like the training scheme
of an unsupervised competitive network, where the weight vectors of the units
are pulled towards the inputs vectors. Therefore the name “unsupervised neural
network” seems appropriate.

3. Experiments on Artificial Data

We generated artificial data to test our methods. These data were uniformly
distributed in the [0 : 1]-hypercube. The idea was that each point represented
the coordinates of an “object”.

In each iteration of the neural networks, two artificially generated data
points (say ¢ and () were picked randomly. The distance d¢¢ was calculated,
and Gaussian distributed noise was added to this distance yielding the dissim-
ilarity. In real life, this noise factor could for example be caused by a different
perception of two stimuli by different respondents. One person may e.g. find
two brands of cola to taste very similar (say 2 on a scale from 1 to 10 express-
ing similarity), whereas another person may judge them to taste somewhat less
similar (say 3 on the same scale from 1 to 10). Given the two indices £ and
¢, and their dissimilarity, a training iteration could be performed as described
above.

The aim of the training process in the case of this artificial data, is to find
the original coordinates as the coordinate representations of each object. Of
course, the solution quality is invariant under rotations and reflections, as is
the value of (N)STRESS.

We tested the feedforward neural network on artificial data for different
dimensionalities and dataset sizes. The value of NSTRESS yielded by the
network was 0.00032 = 0.00006 while the number of objects was 50, 100, 200,
300, 400, 500, and the number of dimensions 2, 4, 6, 8, 10. For 10 and 25
objects the variance was only slightly larger.

100

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

For the unsupervised competitive neural network results were even better.
The final value of NSTRESS was 0.00016 £ 0.00005, for all experiments.

Figure 3 shows an artificial 2-dimensional problem (100 samples of the func-
tion 0.5 *sin(10z) + z2 — 0.5 * £ — 0.5 in the interval [-1 : 1]), and the solutions
yielded by the two networks. The form of the original problem is clearly recov-
ered by both methods.

oot

....

Figure 3: Artificial problem and solutions found. Left: original data, middle:
solution feedforward neural network, right: solution unsupervised competitive
neural network. :

4. Experiments on Real Data

After testing the methods on artificially generated data, we went on to test the
methods on two real datasets.

The first dataset is Fisher’s famous Iris dataset. This dataset contains 150
samples describing four features of iris plants. In total, three classes of iris
plants are present in the database. The left side of Figure 4 shows the 2-
dimensional representation of this dataset provided by the feedforward neural
network. The value of NSTRESS for this solution was 0.006899. The three
classes are clearly visible in this 2-dimensional representation.

35 4

-
.
3 .
0‘ 3 x
26 o o . °w ’sé
%
2. 2 s
2 R a
Y Y
>
* * 1 .0
5 A Y e
.
.
1 4
s a
0§ \
i -
iy .
o el it L, »
o @ ¢ “"o:‘: 2 ¢
o5 a a uagﬂ§5 DA
.5 o% o *
° g8 o .
2 o Hpa ° 4 ES
Af o e
a® Bg
a a
1.5 L -4

Figure 4: 2-dimensional representations of the 4-dimensional iris dataset (left),
and the 16-dimensional zoo dataset (right).

101

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 97-102

The second dataset we used was the so-called “zoo” dataset, electronically
available from: ftp://ftp.ics.uci.edu/pub/machine-learning~databases
/zoo/zoo.data. It is a 16-dimensional set containing 101 instances describing
animal features. The animals are divided into seven classes. Figure 4 shows
the 2-dimensional representation of this dataset generated by the feedforward
neural network. The value of NSTRESS for this solution was 0.172777. The
heterogeneity in the data and its natural structure are clearly visible in the
2-dimensional representation, although our method uses no class information.

5. Conclusions and Future Research

We have presented two simple and fast neural network methods for multidi-
mensional scaling. Both methods perform well. Our networks are particularly
useful for cases where only dissimilarity data are available (as is often the case
in psychology and marketing). Furthermore, our neural networks can be used
for dimensionality reduction, exploratory data analysis, and data visualisation.
Possible directions for further research include the development of a new er-
' ror measure, which takes less time to evaluate than the current O(n?). Another
enhancement could be the addition of a weight factor, such that small distances
make a relatively bigger contribution to the total error than the big ones. This
would produce a non-linear mapping, possibly showing more structure.

References

(1] Davidson, Mark L., Multidimensional Scaling, Wiley Series in Probability
and Mathematical Statistics, Wiley, New York, 1983.

[2] Hofmann, Thomas and Joachim M. Buhmann, Multidimensional Scaling
and Data Clustering, in Advances in Neural Information Processing Systems
7, Morgan Kaufmann Publishers, 1995.

[3] Lowe, David and Michael E. Tipping, Feed-forward Neural Networks and
Topographic Mappings for Exploratory Data Analysis, Neural Computing
and Applications 4, 83-95, 1996.

[4] Mao, Jianchang and Anil K. Jain, Artificial Neural Networks for Feature
Extraction and Multiviariate Data Projection, IEEE Transactions on Neural
Networks 6, 296-317, 1995.

[6] Schiffman, Susan S., M. Lance Reynolds and Forrest W. Young, Intro-
duction to Multidimensional Scaling — Theory, Methods and Applications,
Academic Press, New York, 1981.

[6] Wish, Myron and J. Douglas Carroll, Multidimensional Scaling and its
Applications, in Krishnaiah, P. R. and L.N. Kanal (eds.): Handbook of
Statistics, Vol. 2: Classification, Pattern Recognition and Reduction of Di-
mensionality, 317-345, North Holland, Amsterdam, 1982.

102

