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Abstract. I present a model for visual contrast gaim control that is based on
results from psychophysical experiments on human vision. The model pools
contrast in channels that are tuned for spatial frequency, orientation and color .
and combines these contrasts selectively to determine channel gain. The chief
effect of the contrast gain control is to equalize contrast levels across space.
Characteristic images for the model show that the contrast gain control also
equalizes contrast across spatial frequency and orientation. The receptive field
of a model neuron comprises a standard, linear receptive field and a large
inhibitory surround provided by the contrast gain control. This processing
accounts for a variety of psychophysical results on contrast induction and for
- many visual illusions produced by contrast-modulated stimuli.

1. Introduction

Electrophysiological work by Shapley and Victor (1979) initiated a number of
investigations of the response gain of neurons in the retino-cortical pathways during
the 1980s. Heeger (1992) proposed an influential model for the results, in which
neurons are tuned to varying spatial frequency and orientation and have their own
contrast gain control that acts through divisive normalization. Such a normalization
helps to match neuronal channel capacity to the visual signal, and to provide for
contrast constancy under changing conditions of viewing, for instance, to compensate
for fog or haze (Robson 1988). Sperling (1989) proposed a psychophysical model of
human spatial vision with a contrast gain control, and work on contrast induction by
Chubb, Sperling and Solomon (1989) drew a direct parallel between physiological
contrast gain control and the perceptual phenomenon of contrast induction, which is
demonstrated in Figure 1. The two disks, at left and right, have physically identical
contrasts. Yet most observers agree that the disk on the right has a higher apparent
contrast than the disk on the left: the white is whiter and the black is blacker. One
infers that the visual system has an automatic contrast gain control: in response to the
high contrast of the annulus at left, the visual system reduces contrast gain, while in
response to the low contrast of the area that surrounds the disk at right, it increases
contrast gain. The result is the apparent difference in disk contrast. In my own work
with contrast induction, performed in collaboration with B. Singer, the initial
questions were whether contrast induction was a feature of color vision and whether
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Figure 1. Demonstration of contrast induction.

there existed contrast gain controls within color-sensitive pathways. We created
colored, isoluminant versions of Figure 1 and observed variations in apparent color
contrast, similar to those shown with the achromatic stimuli. We continued with
experiments to characterize the mechanisms responsible for the contrast induction,
and turned to the work on contrast gain control to help provide physiological
underpinnings (Singer and D'Zmura 1994; Singer and D'Zmura 1995; D'Zmura and
Singer 1996; D'Zmura in press). The resulting model is presented here.

2. Multiresolution Model

Model channels are selective for color, spatial frequency and orientation. Each channel
response is multiplied by a gain that depends on the local contrasts of the channels.
These local contrasts depend on channel response and on contrast pooling functions
with sizes that depend on channel spatial frequency. We used four octave-wide spatial
frequency sensitivities, six orientation sensitivities of width 30 deg, and three chromatic
sensitivities (A, L&M and S) to create the model. These chromatic sensitivities
correspond to the three basic axes in the color space of Derrington, Krauskopf and
Lennie (1984): an achromatic intensity axis (A), a red-green axis (L&M) and a yellow-
blue axis (S). The spatial frequency sensitivities of the channels are described by non-
overlapping regions of the spatial frequency plane (see Fig. 2). Spatial frequency,
orientation and color sensitivities were combined factorially to produce 72 channels.

Model computation starts with a color decomposition of an input image into
achromatic, L&M-cone axis and S-cone axis components. These three color
components T, I,,, and rg are determined by appropriate linear combinations of an input
image's RGB values, after the image has been stripped of its average value:
((X) = 2, (RH)-R,,) + 8. (G(X)-G,,) + 8, (B(X)-B,,), (1)

for mechanisms i = A, L&M and §. The model then determines the responses of the
channels tuned to spatial frequency and orientation by transforming the color responses
into the spatial frequency domain and parcelling up the input image among the various
channels. Suppose that the functions G(w), for j = 1,2,3,4, describe the four spatial
frequency sensitivities and that the functions H,(¢), for k=1,...,6, describe the six
orlcntauon sensitivities (as in Fig. 2). The response ry(x) of the channel with the i
color, " spatial frequency and k" orientation sensmvmes is then given by:

X) =77 [ [r(x) 1 x G(e) x H(0) ], @
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Figure 2. The model's achromatic channels, tuned fi ntation and sp: equency. Each of
the 24 plots of channel sensitivity is labeled by a sinusoid in the left column that indicates
channel peak spatial frequency and by a sinusoid in the top row that indicates the central
orientation of the channel. Each of the 24 sensitivity plots has its origin (frequency 0) in the
center; frequency increases as one moves from center to edge. White areas indicate sensitivity.

for i=A, LM, S, j=1,...,4, and k=1,...,6. The original chromatic response r(x) to an
input image (Eqn. 1) is subject to a Fourier transform % and is then filtered using G,
and H, to produce the appropriate response in the spatial frequency domain, which is
then transformed back to the space domain to provide the desired response ().
Figure 3 illustrates the responses of the 24 achromatic channels of the model to a
(color) image of a space shuttle vehicle.

Figure 3. Responses of the model's achromatic channels to the spac shuttle image. Brighter
values indicate greater responses.
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The model multiplies each of the 72 channel responses at each position by channel-
specific gains, which are determined by taking linear combinations of local contrasts
found within each of the channels. The local contrast within a channel is computed
by taking the absolute value of the channel's response and convolving the result with
a Gaussian contrast pooling function of appropriate size. The formula for computing
the local contrast ¢, (x) within the ijk" channel, as a function of spatial position, is:
Cl(X) = N(x) = Iry ()1, 3)

for i=A, LM, and §, j=1,....4, and k=1,...,6. The Gaussian functions N, are spatially
isotropic and have standard deviations o, that increase linearly with channel peak
wavelength (D'Zmura and Singer 1996). In Figure 4 are shown the local contrasts
found within the model's 24 achromatic channels in response to the input image.

Figure 4. Local contrasts within the achromatic channels of the model. Brighter values indicate
higher local contrasts. Note that the convolution blurs the response increasingly as channel
peak wavelength increases. Inspection of the local contrast in the low-frequency, horizontally-
oriented channel shows that the gradient between sky and ground (see also Fig. 3) has been
rectified in the contrast computation.

The gain control forms, for each channel, an appropriate linear combination of the
contrast responses which it then uses to inhibit channel signals. The coefficients b
that describe channel interaction are set to (negative) values that incorporate
psychophysical results on selectivity in spatial frequency, orientation and color
(Chubb, Sperling and Solomon 1989; Solomon, Sperling and Chubb 1993; Singer and
D'Zmura 1994). Weighted contrasts are summed within each channel's contrast gain
control. The gain g, (X) on the ijk" channel as a function of spatial position is:

4 6
giix(x) =gkt Z E 2 biik.abc Cane(X) 4)

a=ALM,S b=1 c=1

for i=A, LM, and S, j=1.,...,4, and k=1,...,6. The gain on the ijk" channel depends on
the local contrasts in all other channels. Figure 5 shows the gains to be applied to
channel responses in our example.
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Figure 5. The gais to be applied to achromatic channel responses, in response to the
space shuttle image. Higher values indicate higher gains.

The receptive field model that is suggested by the results has two components. First
is the standard linear receptive field, which is selective for stimulus spatial frequency,
orientation and color properties (e.g., Lennie, Krauskopf and Sclar 1990). These
receptive fields determine the immediate response r(x) of the channel. The second
component is a large inhibitory surround, somewhat but by no means completely
matched to the properties of the center, which has a Gaussian profile, within which
contrast is pooled. Activity within this inhibitory surround determines channel gain
g(x), which determines the attenuated channel response g(x) x r(x). One may place a
temporal filter in the pathway that computes local contrast to incorporate the temporal
frequency sensitivity and phase lag results of Singer and D'Zmura (1994).

3. Discussion

Contrast gain control processing equalizes contrast levels across space (as in Fig. 1)
In addition, the center-surround structure of receptive fields leads to a variety of
visual illusions with contrast-modulated stimuli. These illusions are analogous to
classical visual illusions that depend on lateral inhibition and include second-order
Chevreul stripe, Mach band and Craik-O'Brien-Cornsweet stimuli.

The contrast gain control also equalizes contrast levels across spatial frequency and
orientation, as illustrated in Figure 6. The image sequence at top results from the
repeated application of the contrast gain control model to the space shuttle input
image. Below are shown the differences between an output image and the previous
image. The first difference, shown in column two, is that between the original image
and the immediate output of the contrast gain control, and it shows clearly the spatial
equalization of contrast. Contrast is reduced strongly in areas of high contrast, like
the shuttle and the rocket, but is little affected in areas of low contrast, like the sky.
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Figure 6. Contrast gain control applied repeatedly to input image (top row) with differences
between adjacent members of the sequence shown immediately below (bottom row). The
sequence converges on a characteristic image.

Repeated application of the model leads to an image that is not changed by the
contrast gain control: the differences fall off to zero. Such an image is a stable point
of convergence that characterizes model processing, and it reveals increased energy at
orientations and spatial frequencies not present in the original image. Energy is now
spread more equally throughout all spatial frequency and orientation bands.
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