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Abstract. We calculate the information capacity of a neuron emitting
as a Poisson process in response to a static stimulus, and the stimulus
distribution required to reach the capacity, in the case of a constraint
on the average frequency. These optimal stimulus distributions (i.e. the
ones reaching the information capacity) are then reexpressed in terms
of ‘tuning curves’ for neurons with a continuous response to a scalar
stimulus.

1. \ Introduction

Since the work of Shannon[l] many researchers have tried to apply results of
information theory to the study of the nervous system. Early papers focused on
the information capacity of a spiking neuron using radically opposite hypothe-
sis: Mackay and McCulloch[2] estimated the information capacity of a neuron
using the duration of interspike intervals to encode information, while Stein[3]
derived the information capacity of a neuron using a frequency code, obtaining
estimates varying by several orders of magnitude. Until recent years however,
very few attempts have been made to quantify the information transmitted by
real nerve cells, and to attempt an explicit comparison with bounds provided
by information theory [4, 5, 6].

In this paper we would like to perform a first step in making a comparison
between bounds given by information theory, and information transmission by
cells coding very simple stimuli, i.e. stimuli which can be characterized by a
single scalar. The nervous system is full of examples of cells which seem to
encode scalar stimuli with a frequency code: cells selective to orientation in
primary visual cortex, to direction of motion in MT cortex, to head orientation
in postsubiculum of a rat, etc... For these systems, neurophysiologists have
often determined ‘tuning curves’ with a reasonable precision. Thus one is
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tempted to translate a given tuning curve in distribution of frequencies, to
estimate the mutual information given by a spike train in a given time interval
on the stimulus, and compare it with the information capacity, or on the other
hand, determine the optimal ‘tuning curve’ obtained from the distribution of
frequencies that attain the information capacity. This is the goal of this paper.
We have chosen for this preliminary study the simple situation of a static
stimulus in a given interval, and of a neuron emitting spikes as a Poisson
process, with a stimulus-dependent frequency.

The organization of the paper is the following: we first derive the informa-
tion capacity of a spiking neuron with a constraint on the average frequency.
This enables to determine the stimulus distribution optimizing the information
transmitted per spike. Then we express these results in terms of tuning curves,
and compare in conclusion the optimal tuning curves with experimental ones.

2. Information capacity and optimal stimulus
distributions

We consider a single neuron emitting spikes according to a Poisson process: at
a given frequency v, after a time ¢, the number of emitted spikes k& obeys to
the distribution

(vt)* exp(—vt)

Q(k spikes emitted in [0,t] | v) = X

(1)
We assume that the frequency v is a deterministic function of a scalar S which
encodes the stimulus. If the stimulus is drawn randomly from a distribution
p(S), the frequency distribution P(v) is given by P(v) = [dSp(S) 6( v —
v(S))

Some constraints may be added on the frequency distribution: a minimal,
non zero, frequency, v > vnyn, in order to take into account spontaneous
activity; and a maximal value, v < Vpqs, in order to take into account the
refractory period. The information capacity of such a neuron has been obtained
by Stein[3]. Another type of constraint might be required, that of the average
activity p of a neuron.

The average information carried by the number of spikes observed during
[0,¢] about the stimulus is

Im=/wZPwam%4%%% @
k

where the probability of observing k spikes given v, @Q(k|v), is given by the

Poisson law (1), and p(k) is the probability that k spikes are emitted in [0, ]
averaged over the distribution of frequencies:

mm=/wmeww 3)
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Another quantity of interest is the mutual information per spike, i(t) = I(t)/(tp).

We have studied analytically two limits, the short time limit and the long
time limit, and numerically the intermediate time regime.

Long times. Stein[3] showed that the information capacity is reached
at long times when /v has a uniform distribution on (V/Vmin, /Vmaz)- The
capacity is
+ loga(y /-2 — 1), @

€ Vmin

1 2tV
Cct) = 5108‘2 ﬂ,mm

Alternatively the optimization can be considered under some additional
constraint, such as a given mean value  for the frequency. In that case one gets
that the mutual information is maximized for /v having the largest entropy
under the constraint on the square of v/v), and vy, < v: 4/v has a truncated
Gaussian distribution, which gives

1 v
Popt(v) = NIy EXP“% (5)

where Z and p are constants (one has 19 = p and Z — 1in the limit vz, — 0).
The optimal mutual information is in this case

[tZ2 o I ) t 1
I(t) =1 1 =1 —
() = log, P 2p0 log,’ Vim0 T(t) = log, e + 2log, ©6)

Short times. We consider now the opposite limit, that is the case ¢t «
1/Vinaz, Wwhere vpq, is the highest possible frequency. In that limit, the mutual
information, Eq. (2), is, at first order in t,

I8 =t / AP W)y log, ;’:- ™)

where p is the mean frequency. This first-order approximation has also been
used by Skaggs et al[7] to obtain estimates of the information transmitted by
the rat hippocampus about its environment. It can be shown to be an upper
bound on I(t) for any t[4].

Let us first consider the optimization under a given mean value . It is easy
to check that a discrete, binary, frequency distribution maximizes the mutual
information at this order in ¢ under the constraint of a given mean frequency.
For this optimal distribution, there are two possible frequencies, 1 = vy, and
Vs = Vpae, Occuring with probabilities P, and P, = 1 — Py, respectively, with
Py =(p~ Vmin)/(l/maw = Vmin)-

The optimal mutual information per spike i(t) is given, in the simplest case
Vinin = 0, by

ift) = T8 < 1og,
ut 7
which indicates that the optimal mutual information per spike is obtained in
the limit g — o0, in which the mutual information goes to infinity.

Umax
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Figure 1: Left: Frequencies of the optimal distribution as a function of time.
Right: Information capacity of the spiking neuron as a function of time (full
curve); information transmitted in the case of a binary distribution (long-
dashed curve); information transmitted in the case of the long-time optimal
distribution (short-dashed curve)

Note that in this short time limit, for realistic values of v, and p we
typically obtain a mutual information per spike between 2 and 4 bits. This
value is of the same order of magnitude as some estimates obtained with a
time-varying stimulus{5].

Intermediate times. In the case of intermediate times we resorted to nu-
merical analysis. In this section we consider the optimization with constraints
on the minimal and maximal frequency only. Optimization with the additional
constraint of an average frequency yields qualitatively similar results.

The results for vpmin, = 0, Vpmax = 1 are shown in Figs. 1. It shows transitions
occurring at t = 3.5,9.8,18.5.... At the first transition, £ ~ 3.5, a peak at
intermediate frequencies appears in the optimal distribution. At ¢t ~ 9.8 a
second transition occurs, at which a new peak appears. Increasing ¢ further we
find other transitions, with optimal distributions having an increasing number
of peaks.

The information capacity in the interval [0, ¢] is shown in Fig. 1. We show
for comparison the information transmitted by a neuron with a binary distribu-
tion of frequencies, which saturates at 1 bit, and the information transmitted
by a neuron with the optimal distribution at long times. It shows that the
convergence to the optimal distribution at long times is rather slow. When ¢ is
small, the spiking neuron with the optimal distribution for long times tansmits
about half of the information transmitted with the optimal binary distribution.

3. Optimal tuning curves
We now consider the case of a single neuron responding to a scalar stimulus,
and make the connection between the results of the previous sections and ‘tun-

ing curves’ more familiar to the neuroscience community. Suppose that the
stimulus S is drawn randomly from a finite one dimensional domain [-1,1],
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Figure 2: Left: Optimal ‘tuning curves’: long times (full curve), short times
(dashed curve). Right: Optimal ‘tuning curves’ with constraint g = 0.1: long
times (full curve), short times (dashed curve).

with a uniform distribution. When stimulus S is present, the neuron responds
with frequency v = ¢(S). The curve S — ¢(S) defines the tuning curve of the
neuron. The distribution of frequencies, expressed as a funtion of ¢, is

1
PO) =3 [ assw—u(s) ®)

We make the additional assumptions that the preferred stimulusis at S =0
(i.e. $(0) = Vpmae); and that the tuning curve decreases monotonously from
&(0) = Vimqz t0 ¢(1) = Vpin, and is symmetric around S = 0, i.e. ¢(S) =
6(=S).

With these assumptions we can obtain the optimal ‘tuning curve’ in the
different cases studied in the previous section.

Long times, constraint on the maximal frequency:

¢(S) = (VVmaz — (V/Vmaz — \/Vmin)isl)z

Long times, constraint on the average frequency:

H(S) = (H—l (%’))2 where H(z) = /:o \/%exp <~%2> dz

Short times:

Vmnin else

Vmazx if |S] < P
o) ={ 4151 ©)
These different tuning curves are shown in Fig. 2.
4. Conclusion

We have considered the information processing by neurons emitting spikes ac-
cording to a Poisson process. We have shown that the stimulus distribution
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realizing the information capacity are very different at long or short times.
Also, the mutual information is relatively much more sensitive to the distribu-
tion of frequencies for short times than for long times. Tuning curves that fit
experimental data[10] seem closer to the optimal tuning curves that we have
derived at short time. This is in agreement with the hypothesis that the ner-
vous system must extract as much information as possible as fast as possible.
There are however important differences between real tuning curves and the
one predicted by our model. One can easily understand their origin. First,
realistic tuning curves are expected to depend continuously on the stimulus
strength. Second, such a continuous response function allows for the mutual
information to be unbounded as time increases. Furthermore, in a wide range
of ¢, tuning curves which fit experimental data lead to a mutual information
close to the information capacity, at parity of minimal, maximal and average
frequencies.

We have also obtained that the optimal information per spike is obtained in
the short time limit for a binary sparse coding neuron. In order to exploit this
information capacity neurons have to be able to respond in a very short time
to incoming stimuli. Recent studies of recurrent networks of spontaneously
active spiking neurons[8, 9] have shown that in presence of a balance between
excitatory and inhibitory synaptic inputs, a neuron is able to respond very
fast to small changes in the external inputs. This picture is consistent with
neurophysiological and psychophysical experiments showing that processing of
information in the visual cortex can occur at time scales of 10-20ms per layer.
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