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Abstract. Considering the storage problem for the binary perceptron
Penney and Sherrington studied the properties of clipping the maximum
stable continuous network and calculated the fraction of weights that
correctly predict the binary weights. One can wonder whether there are
better continuous networks than the maximum stable one to start from.
In this work other starting vectors (precursors) will be presented which
perform better on clipping than the maximum stable perceptron. We
will show that precursors obtained by minimizing with a cost function in
the hypercube instead of on the hypersphere gives better results.

1. "Introduction

Perceptrons with synaptic weights which are continuous are typically easier
to train than those with discrete—valued weights. There are several learning
algorithms for a continuous—weight perceptron. The Hebb rule is able to store
a small number of random patterns. The AdaTron [1] algorithm yields the
maximum stable network (MSN) for the storage problem. On the other hand
for the discrete-valued weights perceptron, and in particular for the binary
perceptron, there does not exist an efficient learning algorithm except complete
enumeration of all possible states of the synapses. Since computers are limited
in processing speed this is only practical for networks with less than 30 synapses.
So it would be nice to have a at least less expensive learning strategy.

Here we will reconsider the storage problem for the binary perceptron.
There are basically two different learning strategies which have been devel-
oped. One kind of strategy operates directly in the set of 2V binary vectors
on the corners of the N-dimensional hypercube. One uses a cost function to
find the corner of the hypercube with lowest cost. This problem however is
extremely hard since there are many local minima. The other approach {4, 2],
and also the one we will consider, uses information from the storage problem
with continuous weights. It is based on the assumption that the MSN and max-
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imum stable binary (MSB) weights are correlated since both try to maximize
the stability.

We will ask whether the MSB can be sufficiently neared by a perceptron with
continuous weights which can be obtained by a practical learning algorithm.
We call such a continuous network a precursor to the binary one. After having
found such a precursor we can try to obtain a good approximation of the MSB
by intelligent methods of partly clipping and partly enumerating weights. In
the following we will present different precursors and look at their ability to
predict the components of the MSB.

2. The MSN as a precursor

An obvious thing to do is to use the MSN as a precursor. Penney and Sherring-
ton [4] have investigated the properties of the MSN/MSB system and calculated
the fraction of correctly predicted binary weights on plain clipping. This frac-
tion is large going from 90% for o = 0.1 down to 80% near the critical capacity
o = 0.83 [5]. Further, on the basis of numerical simulations for small systems
N < 25 they make the intéresting suggestion that the large-size components
of the MSN are very likely to give the correct prediction for the MSB. This
means that the 20% wrong signs in the clipped MSN must primarily be sought
among the 40% weakest weights of the MSN. This suggestion, if correct for
general N, would drastically reduce the effective size of the original problem as
60% of the MSB components could directly be obtained from the MSN. The
remaining components would then be determined by complete enumeration or
by general optimization techniques.

We performed simulations, by using this suggestion, for a perceptron with
N = 50. The results are shown in figure 1. The full curve displays the the-
oretical value Kp(a). The data points show the minimum pattern stability
as obtained from two different strategies using the MSN as precursor. Each
point presents the average over 200 samples. The simplest strategy is plain
clipping. It gives a poor lower bound for kp(a). The next strategy, being the
straightforward implementation of the Penney-Sherrington suggestion, consists
in clipping the strongest 30 weights and determining the remaining components
by enumerating all 22 possibilities. This strategy is fast and yields an excellent
estimate for kg(a) at low ¢, although the estimate deteriorates at higher values
of oo where a small fraction of clipped components will have the wrong sign.
One notices that for small « the data points are slightly above the theoretical
curve. We did simulations for other smaller values of N and it turned out to
be a finite size effect.
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Figure 1: Minimum pattern stability & as a function of a as determined from
numerical simulations for a perceptron with N = 50 following different strate-
gies described in the text. The MSN is used as precursor.

3. Towards better precursors

3.1. The optimal potential

Naturally the question arises if there are better precursors on the hypersphere
than the MSN. In order to answer this question we consider a set of precursors
in which the MSN is contained. The precursors we will consider here are
obtained by a class of learning algorithms defined by means of a cost function
with a unique minimum on the hypersphere J2 = N. More specifically we will
consider cost functions of the form E(J) = >_, V(A,) with A, the stability of
pattern p. Common learning rules like Hebb and MSN are contained in this
class of algorithms.

Our calculations [3] show that there exists an optimal potential, within
the class of algorithms. Optimal in the sense that the precursor on clipping,
correctly predicts the largest number of MSB components. Although we were
not able to derive this potential analytically we succeeded in obtaining a very
good approximation of the optimal potential. This potential is given by:

v(x>={ e I AZns 1)

[e0] if A<kp

When one uses this potential to obtain the precursor on the hypersphere, one
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Figure 2: Comparison between the hypercube and hypersphere. Minimum
pattern stability « is shown as a function of a as obtained from numerical
simulations for a perceptron with N = 50. The data points are for a precursor
which is fully clipped. The lowest data points are for the hypersphere—case,
the others are for the hypecube.

expects a larger fraction of correctly predicted binary weights by clipping than
with any other potential. Indeed, when one compares that fraction for the MSN
and the optimal precursor, for instance, the difference between the latter and
the former is approximately 2% at o = 0.83 in favor of the optimal precursor.

Simulations with the precursor obtained from (1) are not included here
since, for N = 50, the increase in pattern stability is very small so that they
would result in the same curves as in figure 1. From our theoretical results, we
expect the difference to grow with N. :

3.2. The hypercube

There is still a way to improve the previous results. We tried to change the
domain on which we minimize the cost function. Instead of minimizing on the
hypersphere we tried to minimize the cost function in the hypercube |J;| < 1.
A simple intuitive reasoning shows that this might improve the above results.
Since one tries to maximize the stabilities of all the patterns, weight vectors
which are longer are favoured against shorter weight—vectors. When we mini-
mize the cost function with a starting vector in the hypercube this vector will
always evolve, during the minimization, towards the borders of the hypercube
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Figure 3: Comparison between the hypercube and the hypersphere. Minimum
pattern stability » is shown as a function of « as obtained from numerical
simulations for a perceptron with N = 50. The data points are for a precursor
of which 30 weights are clipped and the others enumerated. The lowest data
points are for the hypersphere—case, the others are for the hypercube.

and preferably towards a corner, since there the vector is the longest. However
a corner will only be reached for very small values of a. This is because, for
larger values of «a, some weights which give difficulty in obtaining stability for
all the patterns will stay much smaller than 1 in absolute value.

Instead of searching for the optimal potential in this case, we investigated
the behaviour of potential (1). It turns out that this behaviour is almost
optimal. So we decided also to work with this potential in this case.

We calculated the fraction of correctly predicted binary weights by clipping
with this potential. When one compares that fraction with the one obtained
with the same potential on the hypersphere, the difference between the latter
and the former is approximately 2% at a = 0.83 in favor of the hypercube.
After minimizing with potential (1) in the hypercube there will be about 50%
of the components +1 for a = 0.83. This number increases for smaller values
of o as expected intuitively. We performed simulations again for a perceptron
with N = 50 in order to compare with the hypersphere. The results are shown
in figure 2 and 3. The full curve displays the theoretical value k(). The data
points show the minimum pattern stability using the precursor obtained by (1).
Fach point presents the average over 200 samples. The lower data points in
figure 2 are the results obtained by using the hypersphere as minimization
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domain, and the precursor obtained is then fully clipped. The next set of data
points in figure 2 are simulations where the hypercube is used and again where
the precursor is fully clipped. These two simulations really indicate that the
hypercube is superior over the hypersphere. The last strategy is one where
we minimize again on the hypercube but we clip the 30 largest components
(of which many are already +1, if not all, as is very probable for small «)
and enumerate the other 220 possibilities. These results are shown in figure
3 together with the results for the hypersphere using the same strategy as
mentioned above. For small a the two strategies are almost identical. The
strategy which uses the hypercube is slightly better for « close to the critical
capacity.

4. Outlook

We presented simulations where we obtained satisfying results for the storage
problem for a perceptron with N = 50. We showed that using the hypercube
as minimization domain provides a way of obtaining better results than with
the hypersphere. It is obvious that one can obtain better or the same results
than on the hypersphere by using the hypercube and less expensive methods.
Of course if we take N larger, say N = 100, then the method of clipping and
enumerating is not practical anymore since we may at most clip 60% of the
components which still leaves 40 components to be enumerated. This is simply
not possible. But with the results obtained with the hypercube we have hope
that we could develop a more complicated strategy that will work for N > 50.
For N > 100 the problem remains difficult and even our least expensive strategy
will be hard to implement.
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