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Abstract. Neural computational approach to blind sources separation
was first introduced by Jutten and Herault [6], and further developed
by others [9, 3, 7, 4]. Necessary and sufficient conditions for the blind
sources separation have been proposed by Cardoso [1], Tong et al[10, 11],
and Common [5]. There have been difficulties of implementing necessary
and sufficient conditions by a neural network with no spurious equilib-
ria. In this paper, we present a necessary and sufficient condition for the
blind sources separation, which can be implemented by a neural network
with no spurious equilibria. Specifically, if the source signals are inde-
pendent and each of them has a non-zero skewness (3rd-order cumulant),
then the sources are separated by a linear transformation, if and only if
all the 2nd- and 3rd-order cross-cumulants of the output are zero. This
condition does not require the 3rd-order cumulants among three different
variables to be zero. Because the condition requires only pairwise statis-
tics (statistics between two different variables), it can be implemented
by a neural network with no spurious equilibria.

1. Blind Sources Separation

Consider the case where the observation vector x(¢) € R" and the source vector
s(t) € R" are related by

x(t) = As(t). (1)
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The problem of blind sources separation is to recover the source signals s(t)
from the observation vector x(t) without the knowledge of the mixing matrix
A. In other words, it is required to find a linear transformation B, i.e.,

y(t) = Bx(t), (2)
such that the composite matrix H = BA has the decomposition,
‘ H =TIA, 3)

for some permutation matrix IT and nonsingular diagonal matrix A.
Throughout this paper, the following assumptions hold:

A4.1: Ae R™™" is nonsingular.

A4.2: At each time, the components of s(t) are statistically independent.
A4.3: Each component of s(t) is a zero mean ergodic stationary process with
a non-zero variance.

A4.4: Each component of s(t) has a non-zero skewness, i.e.,

<s(t)>£0 fori=1,...,n. (4)

2. A Necessary and Sufficient Condition

The main theorem states a necessary and sufficient condition for the blind
separation of source signals. Let R, denote < s(t)sT(t) >. Let C; be a diag-
onal matrix whose ith diagonal element is < s?(t) >, where < - > represent
expectation operator.

Theorem 1 (Main Theorem) Let the sources s(t) satisfy the assumptions
given in A1 through A4. Then, H has decomposition (3), i.e.,

H =TIA,
if and only if the following conditions are satisfied:
HRSHT = Ala (5)
HCy(HoH)T = Ay, (6)

where Ay and Ay are diagonal matrices with non-zero diagonal entries. The
operator o denotes Hardamard product.

Proof: See Appendix.

For the proof of main theorem, the following lemma is necessary.

Lemma 1 Let Q € R™" be an orthogonal matriz. Let £; € R™" and ¥, €
RR™ " be diagonal matrices with non-zero diagonal entries. IfX;(QoQ) = QX.,

o
then Q) has the decomposition, Q@ = I1 I, where Il is some permutation matriz

[o}
and I is some diagonal matriz whose diagonal entries are either +1 or -1.

Proof: See [2]
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3. A Learning Algorithm

Consider a feedforward network with lateral feedback connections as shown in
Figure 1.

Figure 1: Schematic architecture of the network with n nodes

The output y(t) of the network is given by

y(t) = P@)x() - W(t)y(t)

(I+W(@) ' P(t)x(t), (7
where
pu(t) pi2(t) - pia(t)
P(t) = P21‘(t) paa(t) - PQyt(t) ,

P Pra(®) - panl)

0 0 -0

’w;)](t) 0 -+ 0
we=| " - ®)

wnl(t) ’an(t) oo 0

The learning algorithm is given by

d—Zit-) = B{M —yy" ) +yOFT (1) — £y @®)yT ()}IP1), (9)
§1%(15) = y{w®yi®)}, fori>j, (10)

where f(y(t)) = y(t)oy(t) = [y3(2),...,¥2(t)]T, A; is a diagonal matrix whose
diagonal elements are prespecified, and 3, v are learning rates, small positive

constants. The convergence of (9) and (10) is achieved when the following
equations are satisfied:

<A-yOyT®) +y®f (y(t) - fy@)yT@t) > = o, (11)
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and
<yyi(t)> = 0, fori>j. (12)
It can be shown that (11) and (12) implies that
<y@yT®) > = A,
<yOFf @) > = A (13)

where A; is a nonsingular diagonal matrix. By Theorem 1, the source signals
can be recovered when (13) is satisfied.

4. Computer Simulation

The computer simulation is conducted to evaluate the performance of the learn-
ing algorithm (9), (10). The overall system, H = (I + W)~'PA, is supposed
to be generalized permutation matrix at desirable equilibria.

Three different sources are drawn from the same one-sided exponential dis-
tribution with unit variance and zero mean. The mixing matrix A is chosen
randomly as

0.0484 0.3671 0.8085 | . (14)
0.0395 0.9235 0.9253

The learning rates for P(t) and W(t) are .0003 and .00003, respectively.
Figure 2 shows the convergence of P(t) and W(t). They are plotted every 100
iterations.
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Figure 2: (a) The convergence of parameters p;;(t); (b) The convergence of
parameters w;;(t)

The overall transformation matrix H at steady state is

-0.0210 -1.0077 -0.0041
H= 0.0123  0.0167 —0.9540 | . (15)
-0.9983  0.0192 -0.0120
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It can be observed that H is very close to ITA (generalized permutation matrix).

5. Conclusion

In this paper, a necessary and sufficient condition for the blind separation of
source signals having non-zero skewness, is presented. Then, a neural network
is constructed to find a linear transformation which is able to recover the source
signals. Both theory and implementation are provided.

Appendix

Proof of Main Theorem:
i) =: It is straightforward.
i1) <=: We can rewrite the equation (5) as

1

(HEI)HES)T = (AH)(A])T. (16)
Then there exits an orthogonal matrix @ such that
HR: = A}Q. (17)
Hence,
H = AQR;:. (18)
Substitute (18) into (6) to obtain
QR:IK,(QoQ)T = ATHA,. (19)

Here, we have used the relations, (DQ)o(DQ) = D?*(QoQ) and (QD)o(QD) =
(Q o Q)D? when D is diagonal. Premultiply (19) by Q7 to obtain

RIK,(QoQ)T =QTATEA, (20)

- g - g . . . . -
Since Rs * K, and A, > A, are diagonal matrices with non-zero diagonal entries

and (Q o Q)T = QT 0 Q7, from Lemma 1, Q = II J. Thus, (18) can be written
as

H=AITR:E (21)
Or,
H = NNTAJNIR;®
— TIA, (22)
whefe A= HTAl% NIR?isa diagonal matrix. m)
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