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Abstract. A neural algorithm for separating binary sources from their
linear unknown mixtures is presented. The a priori knowledge of binary
sources is utilized by using competitive learning. With the algorithm
1t is possible to handle the difficult case of separating more sources than
sensors. When the mixtures are noisy, it is possible to recover the sources
exactly when the noise level is low.

1. Introduction

Most source separation algorithms are derived under the following assumptions:
o The sources are mutually statistically independent
o There are at least as many sensor as there are sources
e At most one source is Gaussian
e The mixing matrix is non-singular

However, utilizing a priori knowledge when it is available we can often drop
some of the above assumptions [4]. In this paper, we assume that the sources are
binary and that their linear combinations are different. These assumptions hold
for example in the non-fading CDMA model [3]. Since there are only finitely
many different binary source vectors, there are also finitely many mixtures. We
require that all these mixtures are different. Note that this does not require
that the columns of the mixing matrix are linearly independent. It follows that
it is possible to separate more sources than sensors.

We briefly review some previous work where separation of binary or n-valued
sources is considered. In [6] a geometrical approach was given for separating
n-valued sources from linear mixtures. However, this work concentrated on
the case when there are as many sources as sensors. In [2] the self-organizing
map was applied to the less sensors than sources case. The results were not
completely satisfactory, which is due to not fully taking advantage of the linear
mixing model. In [1] the EM-algorithm was used to separate n-valued sources
from. less sensors than sources.
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The algorithm presented in this paper allows separation of binary sources
from less sensors than sources. Both the estimation of the basis vectors and the
separation of sources utilize competitive learning,.

2. Separation of Binary Sources

For simplicity, let us assume that the
binary source signals take valuesin {—1,1}.
Writing the ICA model (see e.g. [5]) as e

'x(t):As:Zsi(t)ai, (1) o 2

where A = [a1,...,a,] and the s;(t) are
the binary source signals, we see that each ol
x(t) is a binary linear combination of the i3 3
real-valued ICA basis vectors a;. There are
2™ different binary source vectors s(t) =
[51(2),...,3m(?)]¥ and therefore at most 2™
different vectors x(t). If all the possible vec-
tors x(t) are different, then it is possible
in theory to separate the sources since the
mapping from the sources to the mixtures
is one-to-one, hence reversible. To find the
required conditions on matrix A, consider
the case when two mixtures are the same:

Figure 1: Two noisy mixtures
of four binary sources are illus-
trated. The 2? = 16 different
clusters are clearly visible.

As| = Asy <
A(s1 —82) =0 =
Av =0, Vivy € {-2,0,2}

The last line shows that any binary sum of any nonempty subset of {a;} must
be nonzero.

It remains to label each observed mixture vector with a corresponding source
vector. Note that to actually observe all the possible mixture vectors x, we need
to require a sort of independence of the source signals.

We can also allow additive zero-mean noise in the observed mixture vectors.

‘When the noise level is low, this results in a set of clusters in the mixture space
(Fig. 1). The algorithm for labeling the observed clusters is a competitive
learning algorithm for updating the estimates of the basis vectors a;. The idea
behind the algorithm follows from the cluster-like structure of the mixture space.
Each binary linear combination of the estimates of the basis vectors a; should
correspond to one of the clusters. For each sample mixture x(t) a best-matching
unit is searched among all the linear combinations of basis vectors. The winner
is updated towards the sample mixture and the update 1s divided among all the
basis vectors. The estimated parameters are the basis vectors a;.
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One iteration of the learning rule is as follows:
1. Obtain a mixture vector x(t).

2. Compute the best-matching unit, i.e. find such numbers b; € {—1,1} that
the distance ||x(¢) — >°;~, b;a;|| is minimized.

3. Update the basis vectors by Aa; = u(t)(b;/m)e where e = x(t) — Y, b;a;

To avoid the possible dead units, i.e. vectors that never win, a conscience learn-
ing scheme is introduced. This can be implemented by multiplying the learning
rate by k(b1,...,by), the number of iterations passed since the best-matching
unit had coefficients b1, ..., by, yielding p/(t) = u(t) * 2=™ *« k(b1,...,by) as
the new learning rate. The multiplier 2~™ is added for scaling. For stability
reasons this should be limited to a constant less than one by p/(t) = min[u(t), c]
where the value ¢ = 0.5 has been used in the simulations of this paper.

3. Theory

We have not shown the convergence of the algorithm presented above. However,
to convince the reader that binary sources can be separated from less sensors
than sources, we show a result concerning two noise-free linear mixtures of
binary sources:

Theorem. Assume that we observe two noise-free linear miztures of m
independent binary sources taking values in {—1,1} and that the ICA basis
veclors a; are pairwise linearly independent. Then the ICA basis vectors
multipied by 2 are edges of the convex hull of the set of miztures.
Furthermore, each basts vector appears twice in the convex hull and there are
no other edges.

Proof.

Take any column of A = [a;,...,a,], e.g. a;. We define the right half plane
H of the vector a; = [a;1,a21]7 as the set of vectors

H= {b I [6121, —an]Tb > 0}

We can arrange so that each basis vector a;,¢ = 2,...,m is in H by changing
the sign of the basis vectors and the corresponding source signals as necessary.
Now consider the vectors x; = As;,j = —1,1 where s; = [j,—1,...,-1]T.
Clearly x; — x_1 = 2a;. Take any source vector s = [s1,...,5n] and the
corresponding mixture x = As. We show that d = x —x_; € H. Compute

m m
[azly*dn E a21,—a11 (ais; — ai(— E [as1, —a11] az(5i+1)

In the last sum each inner product {as;, —au]Ta,- 1s positive for ¢ > 1 and zero
for i = 1. Since (s;+1) > 0, it follows that the sum is nonnegative. If it is zero,
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then s = [j,—1,...,—1]7, ie. s = x;j,j = —l or 1. This shows that the line
passing through x_; and x; defines a half-plane containing all other mixtures.
Therefore the edge with endpoints x_; and x; is contained in the convex hull
of {x=As|s=[s1,...,sm]T, 5 € {=1,1}}.

By considering points x}; = [j,1,1,..., 1J7,j = —1,1 we can repeat the
above reasoning to find that each basis vector appears twice in the convex hull.

To see that there are no other edges in the convex hull except the basis
vectors a;, we consider an edge of the convex hull composed of more than one
basis vector. Without loss of generality we can assume that this edge vector
can be written e = Zle 2a;. Since we assume that e 1s an edge of the convex
hull, then 1t defines a half plane in which all the mixtures must lie in. Since the
vectors a;, ¢ = 1,...,p are pairwise linearly independent, at most one of them
can be parallel to e and the rest must be in the same half-plane. But if this is
the case, then their sum cannot be equal to e and we have a contradiction. g

4. Simulations

Figure 2: Two linear, noisy mixtures of four binary images.

An experiment was made where four binary 512 x 512 images were taken as the
source signals. Two linear mixtures of the images were generated by multiplying
the source vectors with the randomly chosen mixing matrix

A= 1.1650  0.0751 —0.6965 0.0591
T N0.6268 0.3516 1.6961  1.7971

and adding Gaussian noise to the mixtures. The standard deviation of the
noise was (0.1, The original and separated images are compared in Fig. 3. It is
observed that the images are recovered with small amount of noise. The two
mixture images are shown in Fig. 2.
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Figure 3. Left: Ungiual unages. Right. Separated tiages.
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5. Discussion

The algorithm presented is able to separate linearly mixed independent bin-
ary source signals when there are less sensors than sources. The algorithm is
somewhat heuristically justified but experiments verify its applicability to the
problem.

The convergence of the algorithm has not yet been proven and some care
must be taken when choosing appropriate values for the learning rate p(t).
Poorly chosen learning rates can lead to wrong results. Initial learning rate
should be large enough for convergence but the learning rate should be de-
creased slowly for achieving good final accuracy.
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