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Abstract. This paper proposes a first approach for separating indepen-
dent sources in nonlinear mixtures. A brief study of the indeterminacies
related to this problem is given. A special case of nonlinear mappings
is studied, these mappings have the interesting property of having the
same indeterminacies than the linear case. Algorithm and experimental
results are brought at the end of this paper.

1. Introduction

The source separation problem, and more generally, independent component
analysis, was mainly addressed in the case of linear mixtures. Up to now, exten-
sion to nonlinear mixtures has only been sketched by few authors [2, 7, 8]. In [2],
Burel proposed a solution for known nonlinear functions. Recently, P. Pajunen
et al. [7] adressed this problem using self-organizing maps. The idea, although
interesting, has a few drawbacks. First, the network stage must be well suited
to the input distribution, which may change according to signal power. Sec-
ondly, the discrete nature of the network (quantization) implies a limited, and
basically poor accuracy, except if we use a huge number of neurons. Finally,
this method implicitly assumes source probability density function (pdf) has
bounded support. Another technique, introduced by G. Deco et al. [4], uses
volume conserving nonlinear mappings to obtain statistically independent sig-
nals as outputs This condition is generally not acceptable because it imposes
very limitative restrictions on the nonlinear mixing function, as we will see in
section 2.

2. Nonlinear mixture model and Indeterminacies

Let be a random vector (e1(t),...,e,(t)) which is an unknown instantaneous
nonlinear mixture of n independent unknown sources (s1(t),...,sn(t)). The
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relation between sources and observations is in the general case:
€i(t) = Fi(s1(t),...,sn(t)) 1<i<n. (1)

We suppose that the F;,7 = 1,..., n are bijective mappings of n variables, and
that the F;’s are continious and differentiable (C?! class).

Without prior information about the type of nonlinearity or about the
sources, the indeterminacies are more serious than in the linear case. For
linear mixtures it is well known [6], that sources can be recovered only up to a
constant scale factor (diagonal matrix A) and any permutation (permutation
matrix P). These two indeterminacies do not imply signal distortion.

On the contrary, for non linear mixtures, indeterminacies may be very
strong. In fact, if 5; and s; are two independent random variables, f(s;) and
g(s;), where f et g are any mappings, are also statistically independent ran-
dom variables. Then, statistical independence only insures that the estimated
sources 8;(t) are any nonlinear function of an original source s;(¢). The original
sources can’t be retrieved except if more information is provided about either
the nonlinear model or the source pdf.

Suppose now that we have a separation structure G; able to estimate n
independent signals from the mixtures e;(t). In the general case, the estimated
sources are nonlinear functions K;(s;) of the original sources !:

Ki(si) = Gi(e1,...,en) 1<i<n (2)
Differentiating this function using (2) gives?:

K1(81) 0
Ik = : : = Jg Jr, 3)
0 K;(sn)

where Jg and Jr are the Jacobian matrices of the G;’s and the F;’s respectively.
Equation (3) means that the Jacobian matrix of the separating structure must
diagonalize the Jacobian of the mixing nonlinear mapping at each point.

Deco’s approach imposes volume-conserving mapping G. Then, the deter-
minant of the Jacobian of the separating structure Jg is equal to 1: det(Jg) = 1.
We clearly see from (3), that this condition requires, for a succesful separation,
that det(Jr) is factorizable as a product of nonlinear functions:

det(Jg) = Ki(s1) - K, (s) = det(Jg).det(JF) = det(J ) (4)

This constraint does work only for a very limited class of nonlinear mappings.
The above model is too general, and in this paper we propose to study a
simplified model of mixture, that we call post-nonlinear (PNL) mixtures.

1 Assuming, without loss of generality, the permutation matrix is the identity.
2In the linear case Jr is the mixing matrix A and Jg is the separating matrix B, Jx
then reduces to a diagonal matrix.
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3. The Post-Nonlinearity model
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Figure 1: The post-nonlinearity model and its separating structure.

We assume that sources are first mixed in a linear memoryless channel, mod-
elled by an invertible mixing matrix A, and then each mixture is distorded by a
nonlinear function (see Fig. 1 left). This model is realistic enough in practice,
if we consider that the propagation is done via a linear transmission channel,
and then the sensors are nonlinear, introducing thus a distortion. Assuming n
sources and n sensors, the mixtures in a PNL model are then :

eilt) = Jr'—“,-(z aijsi(t)) 1<i<n. (5)

Using the PNL model assumption, we propose the following separation archi-
tecture consisting of two stages (see Fig. 1 right): the first one is a set of n
blocks devoted to the inversion of the distortion, the second stage is a sim-
ple source separation system (separating matrix B) for instantaneous linear
mixtures.

The first result of interest is that the separation of PNL mixtures, under
some assumptions about the mixing matrix A, leads to almost the same inde-
terminacies than the instantaneous linear mixtures: sources are recovered up
to an affine mapping i.e. §(t) = APs(t) 4+ v, where v is any vector.

This result holds if the invertible matrix A is mixing enough. We proved a
necessary and sufficient condition is that :

Vai; #0: 3k #j [ aiw #0, or 3k #i/ay #0. (6)

For lack of space, we don’t give the complete proof, but a simple sketch in
the case of 2 mixtures of 2 sources. If A is diagonal, then outputs of PNL
are Fi(s1) and Fy(s1) wich are already independent ! Inversion of F; and Fs
based on output independence is impossible. On the contrary, if the matrix is
triangular, the PNL outputs are Fj(a1181+a1252) and Fa(s3), and it is possible
to prove that independence of outputs of the separating structure can only be
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achieved if G; = F;'1 and Go = F; 1. The results extend for any regular
non diagonal matrix. Generalization to any order is quite evident considering
pairwise mixtures, and leads to the above condition (6).

4. A maximum likelihood approach

The likelihood of the observations can be written as a function of the sources,
of the mixing matrix and of the nonlinear functions. Adaptation of the lin-
ear part of the separating structure can be done by any algorithm for linear
instantaneous mixture, theses algorithms are very well known, and we only
discuss here the adaptation of nonlinear networks. The maximization of the
likelihood of the data will consist in adjusting the estimation of the inverse of
the nonlinear functions. The observation log-likelihood is written as:

logpe/7(e) = ) logps,(s:) + log|det(J5-1)], (7)

i=1

where det(Jz-1) is a function of s. We can expand, using Hermite polynomials,
the log ps,(s;) term (Gram-Charlier expansion). This approach has already
been used by Gaeta and Lacoume [5], and also by Amari et al. [1], in the linear
case.

Expanding (7) up to the 4th order and cancelling constant terms3, we get*:

logpg/r(e) = ~3 Z si+ 8 Z k3 Hs(si)+ % Z kai Ha(s;)+log |det(T£-1)],
i=1 i=1 i=1
(8)

where x3; and k4; denote the 3rd and 4tk order normalized autocumulants, and
H3(u) and Ha(u) denotes the 3rd and 4th univariate Hermite polynomials. By
maximizing the mean of this equation, we then have something similar to the
contrast function of P. Comon [3], up to a supplementary term log |det(Jz-1)|,
corresponding to the volume ”non-conservation”. In the linear case, this term
corresponds to the natural logarithm of the determinant of the separating ma-
trix and vanishes when we use a data prewhitening block before the separating
block. This equation can be simplified if we know that the sources pdf are
symetric (i.e. with null skewness, k3; = 0).

5. Application to the post-nonlinearity problem

The above expansion (8) is valid in the general case. In this section we apply
it in the special case of PNL mixtures. Many algorithms for linear sources
separation are available, so the estimation of nonlinear blocks G;,1=1,..-,n
will only be exposed in this section.

3Constant terms are without relevance in the maximization of the likelihood.
4In standard mesure.
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Figure 3: Joint input and output distribution.

On each channel, we invert the nonlinear unknown functions F;, using a
simple multilayer perceptron (MLP) with one input e;(t) and one output y;(¢).
Input-output relation is written as:

yi(t) :Zhija(wjiei(t)—ﬂji), t=1--,n. (9)
j=1

where o is a sigmoidal function. We use then n simple MLPs, each one is
dedicated to the estimation of a nonlinear distortion G;, i = 1,---,n, i.e. to
the inversion of %, i = 1,---, n.

The number of neurons in the hidden layer m; was the same for each MLP.
Experimentally in the case of two sources, 5 to 6 neurons are quite sufficient.

The parameters h;;,w;; and ;; are estimated using a gradient ascent of
the log-likelihood (note that the MLPs are trained using unsupervised learning
algorithm). In the case of two sources and two sensors, we have, Vi = 1,2:

hij(t+1) = hij(t) + pegp (k51 + 635 + 2410g | 22])  Vi=1,.,m
wii(t +1) = wyi(t) + pegar (k] 1 + k3 + 24log| ) Vi=1,.,m
et +1) = 054(t) + gl (3, + K35 + 241og | 25]) Vj=1,.,m.
(10)
Without normalization, the parameters h;; are not bounded and may tend
towards infinity. It corresponds to scale indeterminacy of the output. To avoid
this, we limit the gain of the output of each MLP, by normalizing the vectors
hi = (hil)”';him)Ta = 1:'”)”'

Simulation results in the case of two sources are shown in Fig. 2. The
PNL mixtures are drawn in Fig. 2 (middle), and the estimated sources in
Fig. 2 (right) show the independent components analysis provided by the
algorithm. In figure 3, the joint distribution of the two outputs are nearly
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rectangular which explains good results of the algorithm. In this experiment,
Fi(z) = x + 52 and Fy(z) = sinh(3z), and z is in the range [-0.5,0.5].

6. Conclusion

In the general nonlinear case, sources can be estimated only up to any nonlinear
function, however we prove that in post-nonlinear mixtures, estimated sources
are linear functions of original sources, as for instantaneous linear mixtures.
For nonlinear mixtures, the ML approach leads to a criterion consisting of
two terms: the contrast function proposed by Comon for linear mixtures, and
an extra term, log |det(Jz-1)| corresponding to local variations of the mixture.
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