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Abstract. Despite their theoretical limitations, ARIMA models are
widely used in real-life forecasting tasks. Parzen has proposed an exten-
sion of ARIMA models: ARARMA models. ARARMA models consist of
an AR model followed by an ARMA model. Following Parzen approach,
0-NARMA neural network are MLP, the units of which are simple non-
linear ARMA-based models (e-NARMA units). They are a non-linear
extension of ARARMA models. To apply Back-Propagation Through
Time algorithm to such a network, we introduce the concept of virtual
error. Virtual errors can be seen as the error on hidden layer units. Such
networks face the problem of non-stationary time series prediction. Ex-
perience shows that -NARMA networks outperform classical statistical
and connectionist models on three different real-life prediction tasks. It
also brings a better understanding of -NARMA behavior.

1. Introduction

Statistical models on which Box and Jenkins methodology [1] is based — such
as AR, MA, ARMA and ARIMA models — are widely used in industrial appli-
cations since they are simple and efficient. Parzen has proposed an extension
of ARIMA models called ARARMA models [2]. Given a time series z(¢), an
ARARMA model consist of an AR model followed by an ARMA model.

Most neural networks only deal with recurrent connections of unit output
and thus do not fit the ARMA process framework. Moreover, since they only
use one delay on their recurrent connection, Lin, Horne, Titio and Giles have
shown that they are experimentally unable to model long term time depen-
dencies, despite theoretical background {3]. To fill this gap, NARX networks
introduce multiple delay-lines and have been shown to better deal with this
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issue. From the forecasting point of view, the most useful NARX network is
the NARMA model [4] which is based on recurrent connections of unit error.

A new neural network architecture for time series prediction should be able
to predict non-stationary time series. Therefore, it should be inspired by the
modular behavior of ARARMA models and by NARX networks to deal with
long-term dependencies.

2. The e«NARMA Model

The e-NARMA model is not only the simplest NARMA model but also it is an
ARMA model with a non-linear activation function. e-NARMA model is the
basic cell of our connectionist modular approach. An e NARMA(p, ¢) predictor
Z 1s expressed

p g
=f|B+) izt —i)+ Y 0;6(t—1)
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where f is a non-linear function. Obviously, the e NARMA predictor is unable
to compute £(0),..., (p). Moreover, to compute &(p),..., #(p + ¢), it needs
initialization values for errors d(p — ¢),..., 8(p). To adjust the model to a
particular time series, several learning algorithms may be used, such as the
least square method or the stochastic gradient descent. The latter leads to the
following formulae:
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where v is the learning rate, the subscript n denotes the nt” iteration of the
learning algorithm and a(t) is called activation. Moreover n = ¢ [T] if t €
[0;T[. In the remainder of this article and to avoid confusion when dealing
with learning, n is written mT 4+ ¢t where m is the epoch number and T is the
overall size of the time series. T} is the subset of signal observations on which
learning is performed (learning set) and T3 is the set on which performances
are measured (test set).

As seen before, the initialization of this model is a crucial point. Using
identical values for é(p — ¢),...,d(p) at each epoch implies that the learning
algorithm would not be able to tell these initialized error values from truly
computed error values. This behavior is not suitable since the mechanism of
the error process is different for initialized and computed errors. To avoid this
phenomenon, new randomly initialized error values are chosen at each epoch.
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3. Principles of -NARMA Networks

Frasconi, Gori and Soda Local Feedback Network! (LFN) is based on a particu-
lar type of unit, for which the output is computed using the value of the inputs
and the previous value of the output [5]. From the time series prediction point
of view, the propagation formula for a particular LFN having only one input
layer and a single output unit is #(t) = f[8+)_5_, ¢;x(t—i)+0 £(t—1)] where f
is a sigmoid function. We call this network Local Feedback Unit (LFU). Using
not only the last value of the unit output as input but the ¢ last values leads
to an obvious extension of LFU: Generalized LFU (GLFU). The propagation
formula of a LFU becomes then for a GLFU &(t) = f[8 + > 0, ¢iz(t —4) +
> i-10; &t — j)]. As LFU are LFN units, GLFU may be the units of a LFN
generalization called Generalized LFN (GLFN). Comparing this equation to e-
NARMA propagation formula leads to the seminal idea of S-NARMA networks.
As sigmoid units are combined to obtain MLP and as GLFU are combined to
obtain GLFN, e-NARMA models may be combined to obtain a larger network
which takes advantage of the e NARMA forecasting ability. We call this new
class of connectionist networks 6-NARMA networks. A 6-NARMA network
is therefore a MLP in which sigmoid units have been replaced by e-NARMA
networks.

4. Virtual Error

To implement -NARMA networks, output error should be computed for every
network unit, including hidden units. For an N layer MLP one-step predictor
# applied to time series z, assuming layer 1 is the input layer and layer N is
the output layer, propagation formulae are

[y;®)],, = =(t — )

@], =7 {0, }
1<k’SN qQrF-t

[ @)], = (85), + Z (8%), [ 0],

Subscript n denotes values related to the n* iteration of the learning process.
[4¥(¢)]n is the output? of the j** unit of the k** layer, [a%(t)]n its associated
activation and [§F(2)], its associated error. QF is the number of units® of the
k*® layer. (¢f;)n is the weight of the connection from the i** unit of layer k — 1

to the j* layer of unit k (static parameter). (8¥), is the bias of the j** unit
of layer k. f is the activation function of e-NARMA units.

LLFN is obviously a particular case of Elman networks where only local connections are
taken into account.

2[yF (£)]n is obviously the network output [£(¢)]n.

3For a one step univariate predictor, the number of units on the last layer Q& is 1.
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The computed output of an N layer MLP when forecasting z(t) after n
learning iterations is denoted &"(¢). MLP back-propagation formulae are

(A ¢U)mT+t v [Jf(t)]mT+t—1 f’{[af_l(t)]mT+t—l} (v~ l(t)]mT+t—1

tely
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() = [ 0] k=N
[5f(t)]mT+t-1 Z (¢k+1)mT+t—-1 [51”c+1(t)]m’1’+t—1 l<k<N
p:

Subscript mT + t denotes values related to the (mT + ¢)** iteration of the
learning process where m is the epoch and T' the number of observations. z(t)
is the target value of the neural network output [2(t)lmz+: = [l (O)]mras. Th
is the learning set.

The [JJN ()}m7+¢ term is obviously an error term. Moreover, for all k& <
N, the [65(#)lmr+: and [6) (t)lmr+4¢ terms are homogeneous. Therefore, the
[(5;-c (t))mr+¢ term should also be seen as an error [6]: the virtual error. The
output error of any MLP unit may thus be computed using back-propagation
formulae. Consequently, sigmoid units of a MLP may be replaced by - NARMA
models. As § is the usual notation for this term which is — from our point of
view-— a virtual error, we call these neural networks -NARMA.

5. 0-NARMA Learning Algorithm

Assuming layers are numbered from 1 (inputs) to N (output), the propagation
formula of a &-NARMA network are deduced from MLP propagation formula:

[y; ()], = =(t - 3)

f0), = {400, }

1<k<N k-1

[af@)], = (85), + D_ (#5)., +Z sE(t—i)]

1:

T;? is the number of error delays for unit j of layer k, (Hfj)n is the weight

of the recurrent error connection of delay i related to the j** unit of layer k
(dynamical parameter).

Using the back-propagation Through Time principle [7] and -NARMA
propagation equation, the S-NARMA back-propagation formulae come out as
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Type of Daily | Monthly Monthly

Predictor || Traffic | Traffic | Expenditure
MLP 1.09 1.06 1.04
Elman 1.02 1.03 1.12
GLFN 1.01 0.99 1.04
ARIMA 1.00 1.00 1.00
NARMA 0.95 0.95 1.01
ARARMA 0.89 0.93 0.95
-NARMA 0.75 0.88 0.92

Table 1: ARV on validation set scaled to 1 for the ARIMA model

follow:
(A5 ire =¥ Oy £ {7 O s } O] ey
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Therefore, we use 6-NARMA back-propagation formulae to compute the virtual
errors 5;? (t — ¢) and to compute parameter adjustments.

6. Experimental Results

Our experiments have been carried out on three real-life time series. The first
one describes the daily number of passengers on a particular railroad line. The
second is the total monthly number of railroad passengers in France. The
last one describes the monthly evolution of the expenditure of a given budget.
Benchmarking practice experimentally suggests that evaluating models on three
time series with significantly various characteristics gives a good approximation
of their overall performance. The chosen comparison criterion is the Average
Relative Variance (ARV) which is roughly model and problem independent [8].
Results are shown in table 1.

7. Discussion

As in this case Mean Absolute Percent Error (MAPE) and ARV are consistent
and as error average value is almost null, the hypothesis of null mean Gaus-
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sian noise is roughly fulfilled. Thus confidence intervals for the error are easily
deduced from its standard deviation. Results confirm that using error-based re-
current connections increases performance, particularly when comparing GLFN
networks and -NARMA networks. Moreover, using only local multiply-delayed
recurrent connections seems to be more efficient since it favors useful recurrent
connections, as shown by the comparison of GLFN versus Elman networks.
Surprisingly, the ARARMA model lack of computational power is strongly
counterbalanced by its efficient temporal behavior. This shows that using local
recurrent error connections is more important than using models with strong
non-linear behavior. The overall performance of S-NARMA networks is defi-
nitely better than all the other models in the case of these series.

An extension of $-NARMA networks is -NARMA networks with eXogenous
variables (6-NARMAX). For these networks, inputs are not only the past values
of the time series (endogenous variables) but also past — and maybe future —
values of explicative variables (exogenous variables).
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