ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

Connectionist Rule Processing Using
Recursive
Auto-Associative Memory

Michael St Aubyn and Neil Davey

Faculty of Information Sciences, University of Hertfordshire
Hatfield, Herts. AL10 9AB. England.

A limitation of many rule-based connectionist models is their dependence
on structure to explicitly represent rules, and their consequent inflexibility
in acquiring and applying novel rules. A model is described in which
recursive auto-associative memory (RAAM) is used as an encoding
mechanism to prepare rules of variable structure and content for input to a
connectionist rule applicator. The encoded rules are applied ‘holistically’ to
perform simple operations upon binary strings.

1. Introduction

The implementation of rule processing in neural networks has been investigated both
as a means of improving the performance of ‘classical’ rule-based systems, and to
model certain aspects of human cognitive performance. Typically, such
implementations involve an explicit representation of the rules within a neural
network’s architecture, exploiting the correspondence between the compositional
symbol structure of a rule and the patterns and interactions of nodes and links that can
be embodied in-a connectionist model (e.g., Shastri & Ajjanagadde 1993).

A weakness of this approach is the inflexibility of structure-based
representations and the consequent difficuity of inducing change (and therefore
learning) within them. At best, their capacity to adapt and learn is confined to the
adjustment of link weights within a predefined architecture.

In this paper, a different approach is described, one in which rules are encoded
using Recursive Auto-Associative Memory (RAAM), then processed ‘holistically’ in
a connectionist rule applicator. This approach potentially frees the rule model from
some of the limitations inherent in the use of structure-based representations.

2. Recursive Auto-Associative Memory

RAAM was devised by Jordan Pollack (1988) as a means of presenting variable-sized
sentences to connectionist processing systems. The RAAM architecture takes as input
an arbitrary (tree-like) symbolic structure to be represented and returns as output a
fixed-width distributed representation suitable for input to some other connectionist

225

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

model such as a backpropagation net. In this sense RAAM may be seen as an
encoding mechanism, the pre-processing component of some larger system. RAAM
also provides the decoding mechanism to convert distributed representations back into
structured objects. A RAAM-based system might therefore have a three-level
architecture (e.g., Chalmers 1990), with RAAM as the outer two levels and some
other processing component in the middle, operating holistically upon the implicitly-
structured representations which are then RAAM-decoded back into symbol structures.
Other RAAM-based models have been used to investigate the accessibility of the
implicitly-encoded features of a symbol structure for classification tasks (e.g., Bodén
& Niklasson 1995, Sperduti et al. 1995).

3. A model of holistic rule application

A model is being developed which exploits this RAAM-encoding mechanism to
convert structured rules into a distributed form suitable for connectionist processing.
The encoded rules are used to perform simple transformations upon binary data
strings. In this model, there is no dependence upon explicit rule-representation by
means of dedicated nodes and links. The rules are implicitly encoded in distributed
representations and holistically applied to data strings.

A principal aim of the model is to investigate the extent to which structure-
based rule processing is possible without structure-based representation, and to
optimise the forms of representation that are most effective for this task.

3.1 The architecture of the model

The model has a two-part architecture, consisting of an encoding component and an
application component (Figure 1). The encoding component is the RAAM. Rules are
constructed from a lexicon of symbols using a simple grammar, then recursively
encoded by the RAAM into a fixed-width distributed representation. A rule consists of
an antecedent (a test) and a consequent (an action). A test, in the current version of the
model, examines one bit of the data string to determine its state (on or off). If the test
succeeds, an action is triggered, which may result in a change of state of one bit (not
necessarily the same one) in the data string.

A rule is applied to a binary data string by the application component, which
is a three-layer back-propagation net. The input layer is clamped with a RAAM-
encoded reduced description of a rule and a binary representation of a data string. After
passing through the hidden layer, the activations in the output nodes are interpreted as
a representation of the data string after transformation by the rule.

3.2 Training

The two parts of the model are trained individually. The first objective is to induce

226

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

“101101”

Rule Application

4

N

[ee0ee00| [006000 |

4 4
“100101”

Rule Encoding *

4

N
SET/ XL‘SET Tiié \.
Flkg\ Flfél\.

(IF (AND (SET FIRST) (RESET FIFTH)) (SET THIRD))

Figure 1. A model of holistic rule application.

learning and generalisation in the RAAM. This is done by creating subsets of the set
of all possible rules, and using backpropagation over the recursive auto-associative
process to adjust the weights of the RAAM until the model is capable of (a) encoding
and decoding all members of the training set of rules, and (b) generalising to the
extent that it can also encode and decode, with an acceptable degree of error, the
remaining rules from the exhaustive set. Cluster analysis of the reduced descriptions
of the rules is used to determine how the RAAM is characterising the data. If the
RAAM is using its hidden units to classify the rules according to ‘sensible’ criteria, it
is likely that the reduced descriptions will contain the significant content necessary for
rule-application in the second part of the model.

The application component is trained by backpropagation to associate an
input, consisting of a reduced description of a rule (produced by the RAAM) plus a
binary data string, with the result of applying the rule to the string. Success here is
measured in terms of the model’s ability to produce correct resultant strings for novel
combinations of rule+data.

227

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

3.3 Results of RAAM training

In current tests on the model, the following simple rule grammar is used. Note that
the conjunction in Figure 1 is not supported by this grammar.

Rule -> “IF” Antecedent Consequent
Antecedent ~> Test Argument

Consequent -> Operation Argument

Test -> “SET” or “RESET”

Operation -> “SET” or “RESET”

Argument -> “FIRST” or “SECOND” or *“THIRD"”

The grammar will produce an exhaustive set of 36 rules. An example rule is
(IF (SET FIRST) (RESET THIRD)),

which reads ‘If the first bit of the binary string is set to 1, reset the third bit to 0.
(The binary strings for these tests are three bits wide.)

In order to train the RAAM, the rules first undergo a conversion process in
which each symbol is replaced by a binary code from a look-up table. The predicates
have three-bit codes, the arguments seven-bit codes. The input to the RAAM consists
of one predicate plus two arguments plus two one-bit flags (which encode structural
information): 19 bits in total. Since the arguments for the next cycle of RAAM
encoding are taken from the hidden layer of the RAAM in the previous cycle, the
width of the hidden layer must be the same as the size of the argument representation,
i.e., seven units. So the architecture of the RAAM is determined as 19-7-19.

Initially, the RAAM was trained on the exhaustive set of rules, the error
value settling within 5,000 epochs. After training, the RAAM could encode and
decode all rules in the set with 100% accuracy (using a best-match algorithm to decode
the representations at the output layer of the RAAM back into symbols). Cluster
analysis was performed on the hidden layer of the RAAM to determine which
regularities were being represented. With each test, it was discovered that the RAAM
was using its hidden units to divide the rules according to certain criteria, such as
presence/absence of ‘SET’ in antecedent predicate position, presence/absence of ‘SET’
in consequent predicate position, and presence/absence of ‘FIRST’ in antecedent
argument position. These divisions were adhered to without exception, indicating that
the RAAM was not only representing the rules in the hidden layer reduced
descriptions, but doing so in a very precise and systematic way.

RAAM generalisation was tested by removing groups of rules (selected at
random) from the exhaustive set and training the RAAM on the remainder. After
training on half of the rules, the RAAM could encode and decode the remaining half
with a success of 96.2% (this is the percentage of correctly decoded and situated
symbols in the rules of the testing sets over 40 trials, each trial involving a different
random selection of rules in both sets).

The results of RAAM training, albeit with a very simple rule-base, show
that generalisation is possible within the rule encoder, the analysis revealing that this

228

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

is being achieved through the categorisation of the data according to significant
regularities within the rule-base. The fact that the RAAM is extracting these
regularities and representing them in the reduced descriptions generated in its hidden
layer indicates that this information will be available to (and hopefully accessible by)
the application component.

3.4 Results of rule application

The rule applicator has been implemented and trained on reduced descriptions of rules
generated by the RAAM, these being combined with binary data strings at the input
of a three-layer backpropagation net which is trained to produce the result of rule
application on its output layer (Figure 1). The input layer of the application net is 10
units wide (seven for the reduced description of the rule, plus three for the binary data),
the output layer is three units (the resultant) and the hidden layer has been chosen
through experimentation to be 12 units. Since the binary strings are three bits wide
and given that there are 36 possible rules, there are 288 (8*36) possible combinations
of rule+data - 72 of which result in a change in the data string.

The applicator was trained and tested using subsets of these 288
combinations. In order to compensate for the fact that in most cases (216 out of 288,
or three-quarters) there is no change in the data after rule application (which creates a
strong bias for the applicator simply to reproduce the same data string on the output
layer), the following method was used to construct the subsets. The set of 72
rule+data combinations which do produce a change in the data were added to another
set of 72 combinations selected at random from the remaining 216. This produces a
set of 144 combinations from which are constructed a training set and a test set. The
rule representations in all trials were produced by a RAAM which had been fully
trained on the entire set of 36 rules.

In the initial trials, the applicator was trained for 6,000 epochs on a set of 72
rules (randomly selected for each trial using the above criteria) and then tested on a set
of 72 different rules. Over 40 such trials, the trained applicator could produce the
correct resultant data string in 100% of training set cases and 60.8% of test set cases
(after the values on the output layer had been rounded to the nearest integer values).
Looking just at the test set instances of rule+data which should produce a
transformation in the data string, the success rate over the 40 trials was 56.6%. In
other words, the applicator could correctly perform tests and transformations involving
novel combinations of rule and data in just over half the cases. In almost all cases
where it failed to produce an expected transformation, the original data was recreated
on the output layer. However, an examination of the actual output values in these
cases usually revealed a noticeable ‘drift’ towards the desired result.

Performance of the applicator was improved by increasing the size of the
training set relative to the test set. With 40 trials involving 108 combinations in the
training set and 36 in the test set, performance in the test set increased to 66.7%, and
63.9% among those cases which should produce transformations. The best results
were obtained in a series of 40 trials with sets of 142 and two, where the success rate

229

ESANN'1997 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 16-17-18 April 1997, D-Facto public., ISBN 2-9600049-7-3, pp. 225-230

in the two-member test sets was 84.2%, and 72.5% among the test cases which
should produce transformations in the data strings.

4. Conclusions and future work

The results obtained with the rule encoder indicate that the RAAM is capable of
generating reduced descriptions which preserve, in implicit form, the content of the
rules that it has been trained on, and that it can learn to encode novel rules from the
same grammar with a similarly high degree of recoverability (96.2%). Furthermore,
the experiments with the rule applicator indicate that this implicit content is
accessible to the extent where it may be used to control simple one-bit tests and
actions on data strings presented to a connectionist network. The generalisation tests
with the applicator suggest that the model is learning how to apply the rules - in at
least half the tests involving novel combinations of rule+data the rule applicator was
able to produce an appropriately modified data string, the success rate rising to 72.5%
in the best case.

The grammar and corresponding rule-base in the experiments conducted so far
are very simple. The intention is to advance the complexity of the model, and the
rules that it can handle, along various dimensions. This will include the addition of
rules that involve conjunctive components (e.g., the rule in Figure 1) and a gradual
expansion of the lexicon to allow the rules to be applied to larger data strings and to
perform a wider range of tests and actions over those strings.

References

Bodén, Mikael & Niklasson, Lars (1995) ‘Features of Distributed Representations for
Tree-structures: A Study of RAAM’ in Proceedings of the 1995 Swedish
Conference on Connectionism, pp. 121-139.

Chalmers, David J. (1990) ‘Syntactic transformations on distributed representations’
in Connection Science, Vol.2, Nos 1 & 2.

Pollack, J. B. (1988) ‘Recursive auto-associative memory: devising compositional
distributed representations’, Proceedings of the Tenth Annual Conference of the
Cognitive Science Society.

Shastri, L. & Ajjanagadde, V. G. (1993), ‘From Simple Associations to Systematic
Reasoning: A Connectionist Representation of Rules, Variables and Dynamic
Bindings Using Temporal Synchrony’, Behavioral and Brain Sciences, 16, pp.
417-494.

Sperduti, A., Starita, A. & Goller, C. (1995), ‘Learning Distributed Representations
for the Classification of Terms’, IJCAI 95, Vol.1, pp. 509-515.

230

