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Object Recognition with Banana Wavelets®
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Abstract. We introduce an object recognition system, based on gener-
alized Gabor wavelets, called banana wavelets. In addition to the qualities
frequency and orientation, banana wavelets have the attributes curvature
and size. Banana wavelets can be metrically organized. a sparse and ef-
ficient representation of objects is learned utilizing this metric.

1. Introduction

In this paper we describe a novel object recognition system in which repre-
sentations of object classes can be learned autonomously. The learned repre-
sentations allow a fast and effective location and identification of objects in
complicated scenes. Our object recognition system is based on three pillars.
Firstly, our preprocessing is based on the idea of sparse coding [1]. Secondly,
effective learning is guided by a priori constraints covering fundamental strie-
ture of the visual world. Thirdly, we use Elastic Graph Matching (EGM) [6]
for the location and identification of objects.

A sparse representation can be defined as a coding of an object by a small
number of binary features taken from a large feature space. Sparse coding has
biologically motivated advantages like minimizing wiring length and concep-
tual advantages like increase of associative memory capacity and redundancy
reduction (discussed exhaustively in [1]). As an additional advantage in our
case sparse coding leads to a siginificant speed—up.
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Figure 1: i-iv) Different examples of faces. v) Learned representations.

Our representation of a certain view of an object class comprises only impor-
tant features, learned from different examples (see figure 1, 5 and 6). Learning
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is inherently faced with the bias/variance dilemma [2]: If the starting configu-
ration of the system is very general, it can learn from and specialize to a wide
variety of domains, but it will in general have to pay for this advantage by
having many internal degrees of freedom —the “variance” problem. On the
other hand, if the initial system has few degrees of freedom it may be able to
learn efficiently but there is great danger that the structural domain spanned
by those degrees of freedom does not cover the given domain of application
at all —the “bias” problem. We propose that a prior: knowledge is needed
to cope with the bias—variance dilemma. We have formulated a number of
a prior: principles to reduce the dimension of the search space and to guide
learning, i.e., to handle the variance-problem. We expect to avoid the bias—
problem because of the general applicability of those principles. In [4] we have
already made use of the principles Invariance Maximization (P1) and Redun-
dancy Reduction (P2). Here we introduce an important additional constraint
P3: Significant features of a local area of the two-dimensional projection of
the visual world are localized curved lines.

We formalize P3 by extending the concept of Gabor wavelets to banana
wavelets (section 2.). To the parameters frequency and orientation we add
curvature and size (see figure 2). The space of banana wavelet reponses is
much larger compared to the space of Gabor wavelet responses used in [6]. An
object can be represented as a configuration of a few of these features (figure
1v), therefore it can be coded sparsely. The space of banana wavelet responses
can be understood as a metric space, its metric representing the similarity of
features. This metric is essential for our learning algorithm (section 3.). The
banana wavelet responses can be derived from Gabor wavelet responses by
hierarchical processing to gain speed and reduce memory requirements. The
sparse representation combined with our hierarchical feature processing allows
a fast and effective locating (section 4.) using EGM.

Our system has certain analogies to the visual system of vertebrates. There
is evidence for curvature sensitive features processed in a hierarchical manner in
early stages [3]; sparse coding is discussed as a coding scheme used in the visual
system [1]; and metric organization of features seems to play an important role
for information processing in the brain [3]. We aim to apply these concepts in
our artificial object recognition system.

2. The Banana Space

The principle P3 gives us a significant reduction of the search space. Instead
of allowing, e.g., all linear filters as possible features, we restrict ourself to a
small subset. Considering the risk of a wrong feature selection it is necessary
to give good reasons for our decision. We argue that nearly any 2D—view of an
object can be composed of localized curved lines. Furthermore, the fact that
humans can easiliy handle line drawings of objects strengthens our assumption
P3. .

Banana Wavelets: A banana wavelet B® is a complex-valued function, pa-
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Figure 2: Relation between Gabor wavelets and banana wavelets.

rameterized by a vector b of four variables b = (f. e ¢, 8) expressing the at-
tributes frequency (f). orientation (@), curvature (¢) and size (s). It can be
understood as a product of a curved and rotated complex wave function /7 J
a,nﬂd a stretched two-dimensional Gaussian G” bent and rotated according to
F? (see figure 3). Our basic feature is the magnitude of the filter response of a

Figure 3: A banana wavelet is the product of a curved Gaussian G”(z.y) and

a curved wave function F?(z,y) (only the real part of the kernel is shown).

bzl,_nzl,na wavelet extracted by a convolution with an image. A banana wavelet
BY causes a strong response at pixel position & when the local structure of the
image at that pixel position is similar to B® (see [5]).

The Banana Space: The six-dimensional space of vectors & = (Z, f-;) is called
the banana (coordinate) space with & representing the banana wavelet B with
its center at pixel position & in an image. In [5] we define a metric d(c. &).
Two coordinates @, are expected to have a small distance d when their
corresponding kernels are similar, i.e., they represent similar features.
Approximation of Banana Wavelets by Gabor Wavelets: The banana
response space contains a huge amount of features, their generation requires
large cpu-time and memory capacities. In [5] we define an algorithm to derive
banana wavelets from Gabor wavelets and banana wavelet responses from Ga-
bor wavelet responses. By this hierarchical processing we achieve a speed up of
a factor 15 and a reduction of memory requests by a factor 20. Figure 4 gives
the idea of the approximation algorithm.
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Figure 4: The banana wavelet on the left is approximated by the weighted sum
of Gabor wavelets on the right.

3. Learning

Extracting Significant Features Per Instance: Our aim is to extract the
local structure in an image I in terms of curved lines expressed by banana
wavelets. We define a significant feature per instance of an object by two
qualities. Firstly it has to cause a strong response (C1), secondly it has to
represent a local maximum in the banana space (C2). Figure 5bi)-iv) show
the significant features per instance for a set of cans (each banana wavelet is
described by a curve with same orientation, curvature and size). In terms of
analogy to the processing in area V1 in the vertebrate visual system C1 may
be interpreted as the response of a certain column which indicates the general
presence of a feature, whereas C2 represents the intercolumnar competition
giving a more specific coding of this feature [3].

Clustering: After extracting the significant features per instance in different
pictures we apply an algorithm to extract invariant local features for a class
of objects. Here the task is the selection of the relevant features for the object
class from the noisy features extracted from our training examples (see figure
3bi)-iv)) We assume the correspondence problem to be solved, i.e., we assume
the position of certain landmarks of an object to be known on pictures of dif-
ferent examples of these objects. In some of our simulations we determined
corresponding landmarks manually, for the rest we replaced this manual inter-
vention by motor controlled feedback (see section 5.). In a nutshell the learning
algorithm works as follows: For each landmark we divide the significant fea-
tures per instance of all training examples into clusters. Features which are
close according to our metric d are collected in the same cluster (P2: Redne-
tion of redundancy). A significant feature for an object class is defined as a
representative of a large cluster. That means this or a similar feature (accord-
ing to our metric ) occurs often in our training set, i.e.. has a high invariance
(P1). We end up with a graph with its nodes labeled with banana wavelets
representing the learned significant features (see figure 5bv) and [5]).

4. Matching

To use our learned representation for location and classification of objects we
define a similarity function between a graph labeled with the learned banana
wavelets and a certain position in the image. A tofal stmilarity simply averages
local similarities. The local similarity expresses the system’s confidence whether
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a pixel in the image represents a certain landmark. The graph is adapted in
position and scale by optimizing the total similarity. The graph with the highest
similarity determines the size and position of the objects within the image.

In a nutshell the local similarity is defined as follows (for details see [5]): For
each learned feature and pixel position in the image we simply check whether
the corresponding banana response is high or low, i.e., the corresponding feature
is present or absent. Because of the sparseness of our representation only a few
of these checks have to be made, therefore the matching is very fast. Becanse
we make use only of the smportant features. the matching is very efficient.

5. Simulations and Conclusion

Learning of Representation: Firstly we apply the learning algorithm to
data consisting of manually provided landmarks. Our training sets consist of
a set of approximately 60 examples of an object viewed in a certain pose. As
objects we used cans and faces. Corresponding landmarks are defined manually
on the different representatives of a class of objects (figure 5a). Figure 5 and 1
show some of the learned representations.
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Figure 5: a: Pictures for training. bi)-iv): Significant features per instance
describing beside relevant information also accidential features like background,
shadow or surface textures. c¢: the learned Representation.

To avoid the manual generation of ground truth we made use of motor
controlled feedback. Our aim is the construction of training data in which
a certain object is shown under changing background and illumination but
without changing of the position of the landmarks. Then we can simply apply
our learning algorithm to this data using a rectangular grid. For the learning
of a representation for cans we put a can on a rotating plate and changed
background and lighting conditions in a sequence of pictures (see figure 6).
For the generation of ground truth for frontal faces we recorded a sequence
of pictures in which a person is sitting fixed on a chair. Ilumination and
background is changed as for cans. To extract representations for different
scales we simply apply the learning algorithm to the very same pictures of the
different sequences scaled accordingly (see figure 7).
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Figure 6: Automatical generation of ground truth for cans.

Matching: For the problem of face finding in complex scenes with large size
variation a significant improvement in terms of performance and speed com-
pared to the older system [6, 4] (which is based on Gabor wavelets) could be
achieved. (Figure 7) shows some examples of matches and mismatches. The
object finding in one picture approximately requires 1.5 seconds on a Sparc Ul-
tra. In [5] we also performed successfully matching with cans and other objects,
as well as various discrimination tasks.

Conclusion: We showed that our object recognition system is able to learn
auntonomously an efficient representation from noisy data applicable to a wide
range of problems.

Figure 7: Face finding with autonomously learned representations for three
scales. The mismatch (right) is caused by the person’s unusual arm position.
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