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Abstract. In the new model presented here, post-synaptic potentials
are considered as punctual numerical elements on which neurons per-
form operations. Modelled in this manner, a neural network appears like
a calculating machine with an asynchronous internal architecture. To
formalize the functioning of such a calculator we propose an algebra of
impulses based on the capacities in sequence recognition of a neuron (W.
Rall’s biological model). The aimed applicative domain is the realisation
of perceptive systems which exploit signal dynamics.

1. Introduction

The realisation of man-machine interfaces based on natural means of commu-
nication utilised by human being pose the problem of mastering the treatment
of spatio-temporal forms. When we represent by a series of vectors, composed
of numerical values, a sequence made of audio signal spectra or a sequence of
images of a visual scene it is possible to study their dynamics by treating the
successive variations of vectors (delta coding). These series of vectors made of
positive or negative pulses are spatio-temporal forms which we identify using
the metric properties of an appropriate vector space.

2. Sequence recognition at neuron level

The followed approach is neuromimetical. It is based on a simplified biologi-
cal model of dendritic tree which Wilfrid Rall proposed in 1962 [4]. According
to [2], this ball and stick model is still a good first approximation of passive elec-
trical properties of certain neurons. With this model, Rall studied the delays
and deformations to which the post-synaptic potentials (PSPs) are subjected
during their propagation towards the soma, as a function of their place of in-
jection. He also studied the summation of PSPs and showed the influence of
the combined effects of the position and the temporal order of the injections
on the observed potential at the soma; by means of the addition of a threshold,
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the neuron has the property of recognizing the sequences of impulses which are
close to a privileged sequence.

For benefiting from this property of the Rall model, while conserving the
vectorial representation of a common artificial neuron, we propose in [8] a
plane coding of elementary PSPs. We consider only PSP maxima (PSPM) and
retain their date and amplitude (fig. 1.a). Then, in a plane representation, we
associate to each PSPM a punctual PSP (PPSP) having for length and phase
the amplitude and date of the PSPM (fig. 1.b). PPSP summation is defined
as a sum of vectors; the propagation of a PPSP is represented by a continuous
decrease of its amplitude and a rotation in the plane (fig. 2). We represent the
sequences of activities arriving at neuron inputs by vectors; each component of
these vectors has a plane representation with the current instant of time as the
common time reference (fig. 3).
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Figure 3: Vectorial coding of a sequence.

In the spatio-temporal artificial neuron (STAN) so modeled, X vector syn-
thesizes, by temporal summation, the afferent activities synapse by synapse of
a neuron. It is similar to the input vector of a common artificial neuron. It is
the STAN short-term memory.

3. Formalizing with the help of complex numbers

3.1. The selected scalars

Vector X component formalizing needs scalars having two degrees of freedom.
We, at first [6, 3], used the ordinary complex field (€). But, by an analysis of
the geometric properties of the plane, in particular those which are related to
the choice of distance and angle measurements, we show in [7] that hyperbolic
complex numbers set, noted here C,, is better adapted than C for representing
PPSP. These numbers, less used than ordinary complexes, have a ring struc-
ture [10]. They are of two different types and have the form :

z = €nexp ep = £ncosh ¢ + esinh @)
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where e2 = 1 (one and not minus one), (n,¢) € R?, € = 1 for numbers of first
type and € = e for numbers of second type. The conjugate is defined as :

T=ateb=a—eb ; (a,b)€R?

3.2. Vector representation

We utilise hyperbolic complexes for coding the components of X :

X =|z; with {”i = &j7e; eXp ey,
; z; /lqvt:vj

The value of & is 1 for excitatory inputs and e for inhibitory inputs; the
amplitude 7, is positive or zero; t,; correspond to the delay which separate
the date in the past associated to z; and the current instant of time; g, is the
inverse of a positive time constant.

Vector W, which corresponds to the weight vector in a common artificial
neuron, is also represented in €7, n being the number of inputs. Its 7** com-
ponent code the characteristics of the synapse j (inhibitory or excitatory type,
efficiency and position). The type is the same as the one of the jt* component
of X. Since W is of the same space as X, hence it codes a sequence of the same

nature as X.

3.3. STAN potential
The potential v of STAN is defined by the aid of an hermitian product :

v=X W= Z v; where v; = 2;W; = &€, Mw; eXD e(Pz; — Pu;)
J
It represents the spatial summation of v; knowing that each v; formalize the
PPSP resulting from temporal summation of the pulses received at the input
J-

Because the product Ejé]_' is equal to +1 or —1 according to the j input type,
the effect of excitation or inhibition on the potential results from a characteristic
of scalars. The coding in €., therefore, makes the use of a positive metric
compatible with the introduction of inhibitory effects, which is an advantage
over the common artificial neuron.

w; and @y, code respectively the efficiency of the synapse j and a delay
which corresponds to the time needed by a PPSP to go from input j to STAN
soma.

3.4. Summation and propagation operations

PPSP summation operation is formalized by a sum in €.. To represent the
attenuation and the displacement towards the soma which each PPSP is sub-
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jected to during time (t), we define the propagation operation in €, by :

P(vj) = viexp(—ps +ep )t 5 pp < pis

The attenuation is exponential with a negative constant —1/p, ; the temporal
rotation comes from the term exp(eu,.t). The propagation operation P induces
in STAN an autonomous dynamic such as defined in [1] :

Piitts = Pty 0Py,

The linearity of P as a function of time considerably simplifies the transposition
of STAN dynamics into equations, as compared to a coding in C.

3.5. Metric properties

Potential v represents the PPSP which synthesizes at a given instant all the
activities from a recent past received by STAN. In the framework of our for-
mulation in €., we may predict with the aid of the propagation operation the
value v, which v will take when the PPSP will reach the soma :

Vs =Py /i, (v)

vy, which is a function of X and W, possesses interesting metric properties
concerning the temporal characteristics of sequences. In fact, vector W, which
synthesize synapse characteristics, may be considered as a result of a certain
sequence of activities. If we construct the set £ of the sequence X which are
not different from W other than by the dates at which the activities arrive, we
prove [7] that in £ v, presents a local optimum for X = W. This means that,
in £, the excitatory or inhibitory effect of an activity on v, is maximum when
it arrives, relatively to the others, at the moment for which it is expected in
the sequence W.

Hence W synthesizes the synapse characteristics by expressing them under
the form of a sequence privileged by the STAN.

3.6. Production of an output

Because v corresponds to a PPSP which has the time required for reaching
soma as a temporal reference, STAN produces an impulse as soon as the phase
of v becomes zero (under the effect of time passage). v hence becomes v;.
For avoiding unexpected outputs arising from the reception of sequences much
different from W, it is necessary to add a threshold. We therefore find, at the
formal level, the sequence recognition property of Rall’s model.

To be able to put into equations groups of neurons, we have selected a com-
mon output function with a linear range (STAN normal behaviour) enclosed
between a low non-linearity (threshold) and a high non-linearity (saturation).
Lastly, we consider that the transmissions are without attenuation or delay;
this last effect has been considered redundant with the mechanism in place at
each input level.
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4. Putting into equations a group of neurons

Our aim is to use the algebra proposed above to put into equations groups of
neurons for realizing given functions. To illustrate the approach we take as
an example an architecture with lateral inhibitions to discriminate elementary
movements in a sequence of images. We present the case of a mono-resolution
of speed and consider four neighbour pixels that we project on a cluster of four
STAN which inhibit each other mutually. Every time a pixel goes from white
to black (binary image), a pulse is emitted on the four STAN corresponding
input. To be able to detect elementary movements towards the left, right, up or
down, discrimination must be made between four prototype sequences (fig. 4).

For that it is sufficient to :

o determine vector WE made of the excitatory weights of neuron k by im-
posing on it to be colinear at the prototype sequence Xk:

e calculate the inhibitory weights by putting into equations the orthogonal-
ity (at near thresholds) of the prototype sequences in the output space
of the cluster,

e choose thresholds in a manner such that unexpected outputs are avoided
(these outputs may occur at the beginning of a sequence before the con-
cerned STAN produces its output and inhibits its neighbours).

By proceeding in this manner, we thus obtain by simulation a perfect dis-
crimination between the different types of movement when the speed of the
moving object is nominal. This discrimination holds for a speed lying between
half and double of the nominal speed.

Such an elementary group of neurons may be integrated in a multi-layer
network. A second layer, for example, may be used for detecting coincidences
or sequences of local movements. Each layer is put into equations by following
the same proceeding.

5. Conclusion

Starting from Rall’s dendritic tree model, we propose a STAN which is based
on an algebraic approach. In STAN, the leaky integrator mechanism [5] and
the concept of time delay at each input [9] are linked together within a for-
mal framework. This artificial neuron possesses a short-term memory which
varies continuously and also has the intrinsic capacity of identifying the end of
a known sequence. The distance between sequences derives from metric prop-
erties. Thanks to the algebraic approach it is possible to put into equations
groups of neurons which communicate asynchronously by impulse exchanges.
The prospective applications are perceptive systems which exploit signal
dynamics (treatment of movement in images, handwriting recognition, speech
recognition). We are currently working on such projects. We also aim to
integrate this condensed temporal neuron model into a specific hardware.
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It is reciprocally proportional to the object speed in the image. To compute the component
values of a prototype sequence, the date at which the last pulse is received is used as the

sequence time reference.
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