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Abstract

This study presents a model, inspired from the biology of the cortex,
which reproduces the synchronization and oscillation properties of the vi-
sual cortex, for neurons in different hemispheres. A network architecture is
presented which models part of the retina and parts of two visual cortical
areas in opposite hemispheres. A probabilistic model is proposed to simulate
the behaviour of neurons, which takes into account both spatial and tem-
poral integrations with interneural delays, comparable to interhemispherical
connectivity. Cell membrane characteristics are modeling using for each neu-
ron a spike memory term. Neuron states are binary {0,1}, and dynamic is
stochastic.

1 Introduction

A number of recent studies in the cat visual cortex have demonstrated the existence
of synchronization of firing between neurons of different areas associated with
the same stimulus [3] [7]. Neurons from different hemispheres with overlapping
receptive fields and similar orientation selectivities tend to show synchronized firing
with a temporal jitter of a few milliseconds.

The visual information from the retina to the cortex comes through a large
number of cells (bipolar, ganglion, LGN and then cortical cells). The average
latency of the responses of cortical cells in V1, activated by visual stimulus, is of
the order of 50ms. Moreover, the visual information takes different visual pathways
from retina to left or right hemispheres and different transmission delays from
retina to right or left hemispheres, du to these different physical pathways can
also be observed.

This model reproduces synchronization observed by the neurophysiologist J.
Bullier and his team [7], for cells of different hemispheres, receiving similar infor-
mation from the retina but with different temporal delays.

Different models have already been proposed in the litterature to explain syn-
chronization or oscillations in the visual cortex {4], such as differential equations
[1] or integrate and fire neurons [2] [6]. In several of these models, global connec-
tions are used to synchronize the oscillators. In our model, oscillations between
cells are not a consequence of the intrinsinc periodicity of particular neurons such
as pacemaker neurons [8] and synchronization between cells depends not only on
well chosen delays between cells, but mostly on an internal parameter linked to
spike memory, which is similar to the evolution of calcium channels.
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2 Network Architecture and connectivity

e The neural net is composed of 3 layers of neurons (figure 1). Layer 1 models
a part of the retina that receives images of the external world. It corresponds to
the set of receptive fields of the network. Layers 2L and 2R model intermediate
areas in the Left or Right visual pathways, between the retina and cortical layers.
Areas 3L and 3R model small parts of Left and Right hemispheres in areas 17 of
the visual cortex.

Figure 1: Architecture of the 3-layers network. Each
two-dimentional layer contains many cells. Arrows
represent connections between layers. Each cell also
provides inputs to many cells of the following layer. &
Lateral connections (within a layer) are not indicated
here.

o The synaptic organization of the network is initially imposed by biological con-
straints. Our network, like most biological networks, is not fully connected. In
each layer (except layer 1), a cell receive inputs from a set of cells of other lay-
ers via connections. For simplification, the spatial distribution of connections is
randomly chosen among layers, using uniform distributions. In each layer, the
proportion of connections received by a cell from cells of other layers (or of its own
layer) is fixed. Two cells of a particular layer are not necessarily connected to the
same ‘cells, but receive globally the same number of connections respectively from
the three other layers (previous, opposite and itself). Cells from area 3L and 3R
share more or less the same receptive field, in layer 1. In figure 1, vertical arrows
correspond to thalamic inputs. Horizontal arrows, which link layers 3L and 3R,
model the cortico-cortical connections, that come through the corpus callosum.

¢ In biological systems, information is transmitted with temporal delays de-
pending on the chosen pathways. There is no biological evidence to consider that
the sum of all transmission delays between retina to left or right hemispheres are
exactly the same: transmission delays depend on the crossed areas.

In our model, cells of layers 3L and 3R receive common information from
layer 1, but with different temporal transmission delays (d3r,1 # J3gr,1; da,p 1s the
temporal delay between layer A and B) to take into account biological observations.

The delays in the model have been chosen to be consistent with neurobiological
data. Visual transmission from retina to cortical area takes 50 ms. The delays have
been chosen in order to have 83z, 21, + d21,,1 = 50ms and d3p 2r +d2r,1 = H0ms+ ¢
with € = 5ms. The transmission delays between the corpus callosum, dsf, o7, and
d3r 2R, are equal to a few ms, usually from 5 to 15 ms.

3 Dynamic

A probabilistic model is proposed to model the neurons’ behaviour. This model
" takes into account both spatial and temporal integration properties with interneu-
ral delays of biological neurons. Each cell i of the network is characterized, at
time ¢, by two components: a potential V and a binary state X} € {0,1}. A
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local parameter m!, which sums up the previous spiking activities of cell i, models
the membrane characteristics of cells, such as the refractory period (sodium and
potassium channels), and properties of the calcium channels.

o Potential V! takes into account both spatial and temporal integrations of signals,

received at different sites on the membrane of cell 7, over a short temporal interval
Agn.

Al t-8}
V! :/ v du with v = E wijj Y
Ain Jj=1

Signals between cells j and ¢ are transmitted with a temporal delay ij > 0,
function of the synaptic distance between cells j and 7 and are weighted by a real
synaptic weight wfj. N; is the number of contacts between cell i and other cells.
Vi* combines the effects of signals received during a time interval [t-A,,1].

o This model introduces for each cell i a local parameter m¢ which sums up the
spiking history of the neuron itself. mf is called ”spike memory term” and is a

function of time. 8 is a constant, 0 < 8 < 1. The evolution of m! is defined by:
mi*! = (1 6).m{ + B.X}

The spike memory term introduced in the model can be linked to the evolution
of calcium channels. The neuron not only remembers the emission of the last spike
but keep track of all the previous spikes, which is more realistic. In this model, the
firing accomodation is taken into account which differs from other modelizations.
¢ Experiments have shown that in vitro biological neurons fire with slightly vary-
ing delays in response to repetitions of the same visual stimulus. The stochastic
function m governs the probability that neuron i fires at time t, which add noise
in the model. The rate of firing depends on the input currents.

The state X} of a neuron is a stochastic function of potential V}:

1
Proba(X: =1) = nf(V} ith Hu) =
ro a( 1 ) 71',( H ) we s (u) 1 + exp(—a(u _ m:—l))

X} is equal to 1 with a probalility «f(V;’) and to 0 with a probability 1 — xf(V}).
¢ (u) is a sigmoid function of slope a > 0 with a threshold m!, function of time t.
Parameter o determines the amount of noise in the system.
Threshold m! is also used to model the refractory period of cell i. If cell i fires at
time t-1 then the firing probability of cell i at time t decreases. If cell i does not
fire at time t-1 then the firing probability of cell i increases for the same value of
potential u.

¢ The network dynamic is synchronous, and the time scale is discrete.

This neuron model can not be directly compared to the class of ”integrate and
fire” which models the time between two emitted spikes.

4 Modeling Visual Stimuli

The visual stimulus generated on layer 1 models light or dark moving bars of
optimal direction and velocity to activate receptive fields of neurons in other layers.
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The visual stimulus is periodic, corresponding to different presentations of the
same signal on the retina. Activities of cells of layer 2 are high, during a temporal
window D, which corresponds to the movement of the bar across their receptive
fields.
Proba(X}=1)=nt~1 for kT <t < D+ kT,
Proba(X!=1)=nt ~0 for kT'+ D<t< (k+1)T
T is the period of the stimulus. The visual stimulus is composed of 50 presen-
tations of the same signal (0 < k < 50).

5 Measures of synchrony

The computation of Cross Correlation Histogram (CCH) between two different
spike trains help us to study the distribution and regularity of spike firing and to
point out synchronization and oscillation between cells.

CCHi;(d) = Z‘(X:—i?l(f.’!_d_ﬂx")

with px, : meantof Jcell X; over time, ox, : standard deviation of cell

X; and 0 <t < 50T

50 presentations of the stimulus of period T are presented on the retina.
CCH; ; measures the correlation strength between two neurons i and j. Two cells
i and j are here considered to be ”strongly correlated ”if Maz4{CCH; ;(d)} >
2/3. The position, dy, of the CCH peak reflects the most frequent time-difference
between the coupled spikes: dy = ArgMaz{CCH; ;(d)}.
A zero-phase difference dy = 0 with a high correlation MazCCH; ;(do) > 2/3
expresses a good synchronization with no phase difference between both neurons
iand j.

6 Emergence of synchronization

Emergence of synchronization occurs for some necessary parameter values of the
model, with fixed and different temporal delays between vertical layers, even if
left and right hemisphere areas receive visual information from the retina with
different transmission delays.

One of the important questions concerning synchronization in the cortex is

whether it is mediated by thalamic inputs or corticocortical connections [7]. In
our model, we find that emergence of synchronization depends on the existence
of connections between the two opposite layers 3L and 3R, which correspond to
corticocortical connections.
Several configurations of connections (excitative, inhibitive weights) between all
layers have been explored. Inhibitory connections between the two opposite layers
(3L, 3R) seems to be a necessary condition for the emergence of synchronization
between cells of these layers (w;; < 0, w;; < 0 for i € {3L}, j € {3R}). The
matrix of connection signs, for all following simulations is then chosen as:

These results are consistent with other studies [6].

o In our model, the spike memory term m¢ with 8 # 0 plays a determining role
for the emergence of synchronization between neurons of the two opposite layers
3L and 3R. As [ increases from 0 to an optimal value fp, the peak position of
CCH computed between two neurons of the opposite layers 3R and 3L approches
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Tlable 1: L:mmecmw‘ty i'\(iat}‘lx ‘of. t.he network, Layers | 1 2L, 2R 3L 3R

+/- represents excitative/inhibitive connec- T

tions between two layers. Dots means that 2'{ ’ ' ' )

layers are not directly connected to each other. ’ + : +
2R + . : . .
3L .+ : . -
3R . . + -

zero and a reinforcement of the correlation strength is observed. The correlation
strength is maximized for ;. Neurons of opposite layers 3R and 3L also tend to
be synchronous with no phase difference (figure 2). Increasing further the value of
parameter 8 > g leads to complex and chaotic neuronal activities.

Figure 2: CCH computed between s}
two neurons of opposite layers 3L and o5}
3R. As B approches an optimal value o3
Bo (here 0.05), the peak of the CCH o2}
is centered at zero, neurons becomes °
synchronous. Parameters: wap2r > °%f
0; warzr > 07 warsr,warar < 0;
dar2r = 2ms; d3p2L = 5ms; dapar =
9ms; dap, = 9ms; A, = 5ms, a =

J.OO -\!"Onm -I.S -I‘O 5 a L] 10 1% 20ms

The following figure 3 presents the percentage of synchronization observed for
two neurons in opposite areas 3L, 3R. Strong synchronizations with no phase-
difference, up to 90 pourcent., emerge for different sets of weights or 8 value and
are associated with high correlation strengths close to 1.

Figure 3: Percentage of synchro-
nization for two neurons of different
hemisphere for different weights and
3 values. High areas corrrespond to
strong synchronization. Parameters:

war2r, = 1; warer = 1; warsr =
warar < 0; darp21 = 2ms; d3r2r =
5ms; dapar = 9ms; darr = 9ms;
Arn, = 5ms, a = 100 . Weights

The emergence of synchronization depends on the temporal evolution of the
spike memory term m} for each neuron i. The optimal value 8y which maximizes
the correlation strength induces a non-linear temporal evolution.

All simulation results are independant of the initial values chosen for the spike
memory term m'=Y. For # = 0, no precise synchronization is observed (left fig-
ures), and the correlation strength is low, ArgMazCCH; ; < 2/3. For the optimal
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value, here fy = 0.1, the evolution of m! and V;* induces synchronization between
neurons of opposite areas 3L and 3R (right figures).

The presence of centered peaks in cross-correlograms is usually interpreted as
meaning that both neurons receive directly common inputs from other sources.
There is no common thalamic input to neurons located in different cortical hemi-
spheres in our model, interhemispheric synchronization mediated here by cortico-
cortical connections reproduce neurobiological observations.

7 Three types of synchronization

In the visual cortex, several synchronizations, which seem to be a universal form of
correlation in the visual cortex, have been shown in the same or between different
hemispheres in the work of J. Bullier’s team [5]. Classification has been estab-
lished using the geometrical characteristics of the central peak of the computed
CCH (peak high, peak area, peak width). The more precise synchronization, ” T”
(for Tower), is principally characterized by a peak of great high (strong correlation
strength) and a small width (good localisation in time). The less precise synchro-
nization, called ”H” (for Hill), is characterized by a large peak width (less precise
synchronization). Characteristics of ”C” (for castle) are intermediate between ”'T”
and "H”.

In our model, these three types of synchronization can be exhibited (figure
4) . T peaks are observed for two cells belonging to opposite areas linked by
short transmission delays. H peaks are observed for two cells linked by larger
transmission delays. These results can be compared to biological data which have
shown that very precise temporal couplings are mediated by the direct reciprocal
connections between visual cortical areas circulating through the corpus callosum
(peak ”T”) [7]. Less precise temporal couplings are mediated by polysynaptic
pathways through the corpus callosum and widely distributed over cortical regions.

Figure 4: Three types of synchro-
nization reproduced in our model de-
pending on various delays between cells
in opposite area 3R and 3L. CCH for
three couples of cells linked by cortico-
cortical connections with different de-
lays ‘ L 2 5 % =

8 Statistical distribution of synchronization

o The overall network activity is then analyzed, and CCH are computed for all
neuronal couples, each cell belonging to a different layer (3L or 3R). We determine
how often such synchronized firing is observed by measuring the CCH peak position
in the total population of neurons of the two oppostite layers 3L and 3R. Figure
5 shows the statistical distribution of peak positions which maximize the CCH
function, computed for all neuronal couples belonging to distinct layers. The
mathematical mode of the distributions is zero, which shows that a majority of
neuronal couples tends to be synchronous.
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e Simulation results were obtained here by using a 30-cells network (5 cells
in layer 2L and 2R, 10 cells in layers 3L and 3R). Each cell of layer 3L (resp.
3R) receives information from one cell, randomly chosen in the precedent layer
2 and from 5 cells randomly chosen in the opposite layer 3R (resp. 3L). The
statistical temporal delay distribution is gaussian. §4 p represents here the mean
of the connection delay distribution, for a cell of layer A receiving connections from
a set of cells of layer B. Similar results have been obtained for larger networks.
The observed frequency of synchronous cells also depends on the probabilities of
connections between cells of different layers. The frequency is maximal for a high
connection probability between cells of the same layer (~ 0.8) and a low, but
strictly positive, connection probability between cells of opposite layers 3L and
3R. All neurons of different hemispheres 3L,3R also tend to be synchronous.

Figure 5: Histogram of position of the peak of =}
CCH computed between all neuronal couples, .|
each cell belonging to a distinct layer 3L or 3R.
Parameters: g = 0.001 wsr2 > 0; wsrz2 > 0;

w3L 3R, WsLsR < 0; 83121 = Tms; S3par = |
6ms; Std of d31 sk and d3gr s distributions is = I—"]
lms. Ar, = 3ms, @ = 100 of = I 5 l = 3 +

E)

Simulation results are consistent with biological experiments which have shown
that coupled spikes occuring in pairs of neurons located across different areas tend
to be emitted most often at the same time [7] [3]. If the connections between
layers 3L-3R are cut, no more synchronization nor oscillations are observed, as in
biology.

9 Emergence of oscillations

This model gives various oscillatory correlograms (figure 6). The sharp peak and
the oscillations observed are totally independent of the periodicity of the stimulus
presented to the retina. The oscillation period depends on temporal delays between
neurons of opposite layers, on the spike memory term m!, and on the window
of temporal integration A,. Absence of noise in the stimulus leads to a highly
regular and bursting oscillatory activity. Multiple visual stimuli (for instance bars)
appear to induce synchronized oscillations in the brain. These results suggest that
oscillation phase may be the ”temporal code” that identifies an object as a whole.
The following results reproduce these observations.

10 Modification of the visual stimuli

Generation on the retina of a sequence of images including a noise, leads to the
diminution of the correlation strength, to the end of synchronization and oscil-
lations between neurons of two opposite areas, for the same network parameters
(figure 6). This shows that the observed oscillations are a response to external
stimuli. This is consistent with- neurobiological observations. These properties of
oscillations and synchronization in the network offer possibilities for pattern recog-
nition. Visual stimuli can also be coded by the temporal synchronization between
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cells from opposite areas.
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11 Conclusion
Our stochastic model with binary states simulate the behaviour of biological neu-
rons. Its originality is to introduce a sigmoid transition probability function, which
depends not only on the potential value, but also on a local parameter which sums
up the spiking history of the neuron and models the cell membrane properties
(sodium, potassium, and calcium channels).

The network architecture reproduces a small part of the visual cortical areas.
A chosen visual stimulus induces in the network the emergence of synchronization
and oscillations between neurons, even if they receive information with different
temporal delays. Our model proposes an explanation for the different types of
synchronization, ”T,C,H”, observed in the brain, when activated by an external
stimulus. Introduction of a noise in this stimulus leads to the abolition of these
properties of synchronization or oscillation. These results are consistent with neu-
robiological observations in the visual cortex.
Acknowledgements: The author thanks R. Azencott for helpful discussions.
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