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Abstract.

The paper introduces the concept of dynamic output elements (DOE),
a novel approach to generate continuous control signals within a self-
learning neural control architecture. Using DOFEs the control signal is
not determined by the decision of the control unit directly, but rather
dependent on the temporal sequence of these decisions. Thus the basic
mechanisms of decision making and learning are preserved. The bene-
fits of the DOF-architecture are shown on a challenging benchmark of
learning to control a highly nonlinear chemical reactor.

1. Introduction

Dynamic programming techniques have proven to provide a powerful founda-
tion for learning control of dynamic systems in a self learning fashion (Barto
et al., 1995). Given a discrete time dynamic system -

Tey1 = f(-’rt, Ut) (1)

the idea is to formulate the control problem as the search for a policy =*
that minimizes the accumulated costs for a control trajectory:

0]

Viz) = n}ian(mt, m(ze)),z0 =z

t=0

Optimization problems of the above kind can be solved using dynamic pro-
gramming techniques. One such method, called value iteration, is especially
suited for the on-line solution of control problems, when only a minimum of
training information is available (Barto & Crites, 1996), (Dietterich & Zhang,
1995), (Sutton, 1996). The main idea is to approximate the optimal value
function by an iterative improvement of the estimation of V*(z). In our work,
we use a multi-layer feed-forward neural network to learn to approximate the
current value function (Riedmiller, 1996). Assuming that the optimal value
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function 1s finally approximated, then the optimal policy can be computed
by stepping through a finite set of available actions, selecting the action that
results in the minimum accumulated costs:

™ (2e) = a; = min{r(z,, a) + V*(f (2, a))} (2)

Thus the control signal applied to the plant u; = a; is one out of a finite
set of available actions A. From the viewpoint of the optimization process,
the action set .4 should be kept as small as possible, in order to reduce the
number of possible policies. Each additional action will lead to an exponential
increase of search space - and thus will make the learning task considerably
more difficult. On the other side, a small number of control signals will lead to
coarse control of the plant which may not fulfill practical requirements. In the
following we introduce a new concept called dynamic output elements (DOE),
that is able to deal with the above dilemma. Even continuous control signals
can be generated, while the principal working scheme is preserved.

2. Dynamic Output Elements

NDU § DOE plant

l.s@wﬁi - mw

XDOE .|

A B

Figure 1: DOFE approach: The controller consists of the combination of a neural
decision unit (NDU) and a dynamic output element (DOE) (line B). The control
signal v is determined by the output of the DOE. From the viewpoint of the
neural controller (NDU), it has to control the combined system of DOE and
plant (line A).

. In the basic approach described in section 1. the control signal is directly de-
termined by the action minimizing equation (2). This selection process based
on the neural value function is performed by the neural decision unit (NDU).
The idea of the concept of dynamic output elements (DOE) is to put an ad-
ditional dynamic element between the output of the selection process and the
input of the plant. The output of this DOF thus determines the control signal
u(t), while its input is the result of a discrete selection process (figure 1). In
state space notation, the dynamic behavior of the DOF can be described by
the following equations:
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E41=p(&,ar) and v =P(&) (3)

where &; denotes the current state vector of the DOE and v; denotes its output.
The input of the DOE is the action selected by equation (2}, a;. The output
vy determines the control signal wu, that is applied to the plant. Thus, u; is a
function of the action and the current state of the DOE, i.e. u; = ¥(p(&:, at)).
Putting this in the dynamic equation of the plant (1) we get:

Ti41 = f(ze, Y(p(&, @) = f'(l‘t,ﬁt,at)

where f’ denotes the function obtained by the concatenation of the functions
f, ¥ and . If we now regard the combination of DOF and plant as a new
dynamic system, we can describe its behavior by the following equation:

( Ti+1 ) — ( f(@e, &, ar) )
&1 T\ el at)

This last equation expresses the crucial point of the concept of dynamic
output elements: From the viewpoint of the neural decision unit, the combina-
tion of DOF and plant can be seen as another dynamic system with input a;
and state Z; = (z;,£:). Thus the task of the decision process basically remains
the same: It now has to select an appropriate action to control the combined
system. The state of this new system is the combination of the state of the
DOE and the state of the plant. Thus the neural decision unit follows the same
basic principles as described in section 1.. Its aim now is to learn an optimal
control for the combined system of DOE and plant.

From the viewpoint of the plant (line B in figure 1), the control signal is
computed by the output of the DOE. Since the DOF has dynamic behavior, its
output is not determined by its current input directly, but it is rather dependent
on the temporal sequence of control decisions made by the neural decision unit.
In other words, the amplitude of the control signal is coded in the sequence
of control decisions. The resulting control signals are not any longer restricted
by the number of available decisions, but rather dependent on their adequate
ordering in time. So the DOE approach is perfectly embedded in the underlying
framework of sequential decision making.

By choosing the dynamic behavior of the DOE, we can obtain several ef-
fects on the resulting control signal. As an example, in the following a DOFE
with I-T; behavior is described. However, the DOE approach is a very general
concept, and various kinds of useful DOF behavior can be adequate depending
on the respective control task.

2.1. The I-T1-DOFE

The range of the amplitude of an appropriate control signal may vary signifi-
cantly according to the current situation. Intuitively, in a situation ’far away’
from the target, a large control signal should be applied to quickly carry the
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system over to the target region, whereas within this region, a more cautious
policy seems adequate. This is the motivation for a special DOE with so called
I-Ti-behavior. The dynamics of this DOFE are described by the following dif-
ferential equation:

v(t) + T o(t) = a(t)

where a(t) denotes the input and v(t) denotes the current output of the DOE.
The parameter T influences the ’quickness’ with which the DOE reacts to a
certain input signal. The working behavior of the I-T;-DOE can be described
as follows: The incoming signals are integrated over time. This is combined
by an additional low-pass filter that smoothes the outgoing signal. A sequence
of input signals with the same sign will lead to a smooth increase of the out-
put signal, a sequence of signals with opposite sign will decrease the output.
Thus a neural I-T;- DOFE-controller can generate continuous control signals with
varying amplitudes.

3. Control of a chemical plant

The control of a chemical plant offers a challenging benchmark for nonlinear
controller design in general. The task can be shortly described as follows (for
a detailed description see (Follinger, 1993)): In a reactor there is a chemical
substance with concentration z;. The substance chemically reacts with the
fluid in the reactor in an energy-emitting decay process. This leads to a raise
of the temperature 25 in the reactor. On the other side, the temperature z,
influences the rate of decay of the substance. Thus we got two highly interacting
processes of concentration and temperature coupled via a nonlinear function

v(z1,22):

£ = —aya +y(e1,29)
Ty = —an $2+a227($1’x2)+bu
’7(131,:52) —_ (1-——],’1),@06—3;;_2 (4)

The aim of control is to keep the reactor producing a certain level of con-
centration by the control of external heating or cooling. In the following two

analytical control approaches are compared to a self-learning neural controller
" using an I-T;-DOE.

3.1. Analytical controller design

Two approaches of analytical controller design are considered for comparison.
We just give the formulae here, for a detailed discussion the reader is referred
to (Follinger, 1993). The linear control law is given by:

u=—-0.8y
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The equation for the computation of the control signal in case of a nonlinear
control law is much more complicated:

—e

e o —e
e ¥y — ¢ Itvr

u=—k(y)y=—[Coy+Crye T + Cay

Y—UYr
One can immediately see two things from this expression: firstly, the control
law is rather complicated and difficult to derive, and secondly much a priori
information of both structure and parameters of the plant is integrated in the

final control law.

3.2. Self-learning neural control

The self-learning neural controller has no knowledge about the nonlinear dy-
namic behavior - it just observes the result of its current policy with respect
to success or failure in reaching the final concentration (for a more detailed
description of the self-learning framework the reader is referred to (Riedmiller,
1996)). The following reports the results of applying the controller using an
[-T;-DOE in comparison to linear and nonlinear controller design. Starting at
a concentration of z; = 0.42 the heating and cooling of the reactor has to be
controlled until the new target concentration of ; = 0.72 has been reached.
Figure 2(a) shows the temporal behavior of the concentration for the three
different controllers. The linear controller behaves worst: It considerably over-
shoots the target and reaches the desired concentration after about 7 minutes.
Applying the analytical nonlinear controller gives a better result: Overshooting
of the target concentration is drastically reduced.

The performance of the neural controller overcomes both of the analytical
approaches. It nearly avoids overshooting completely, reaching the final target
concentration after less than 6 minutes. This is the more remarkable since in
contrast to the analytical controllers, no knowledge about plant behavior is
used and the control strategy is learned. The control signal is plotted in figure
2(b). By the adequate use of the features of the I-T;1-DOE, the controller has
learned to generate a continuous control signal with varying amplitudes. This
is of special importance for nonlinear plants, where the appropriate range of
control signals may strongly depend on the situation.

4. . Conclusion

The article introduces the idea of dynamic output elements (DOE) as a gen-
eral concept to produce arbitrary control signals within the framework of a self
learning neural controller. The general idea of learning to make a decision out
of a finite set of available actions is preserved. Actually, this set can be kept
small in order to achieve good conditions for the underlying learning process.
The ability of producing a wide range of control signals arises from the dynamic
behavior of the DOE: The control signal is determined by the sequence of de-
cisions produced by the neural decision process. The application to a highly
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Figure 2: Control of a nonlinear chemical reactor - comparison of analytical
linear and nonlinear controller design and self-learning neural controller. (a)
Concentration of the substance (b) Control signal generated by the neural I-T;-
DOE controller
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nonlinear chemical plant shows the favorable qualities of a self-learning neu-
ral controller with an I-T;-DOE in comparison to analytically derived control
laws.
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