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Abstract. We apply the symmetric composition method for the inte-
gration of ordinary differential equations to dynamical neural networks.
In this method, we split the vector field, which is parameterized by a
neural network, into the contribution of each of its neurons. We then
solve the elementary differential equation associated to each neuron sep-
arately, and recombine these contributions in a sequence of compositions.
This gives rise to simple integration rules for dynamical neural networks,
which we present for dynamical single-hidden-layer perceptrons.

1. \ Introduction

For the time-integration of continuous-time recurrent neural network, researchers
most often use some standard scheme, such as the Euler method or the Runge-
Kutta method. But physicists [2, 5] have recently introduced a completely
different class of methods for the solution of ordinary differential equations
(ODEs): the composition methods. The spirit of these methods is that if the
vector field of the differential equation is the superposition of some elementary
vector fields, we can approximate its solution by composing the flows of the
elementary contributions. Composition methods are particularly useful for nu-
merically integrating ODEs when the equations have some special structure, of
which we can take advantage [4].

We will first present the class of dynamical neural networks that we will
consider, together with the necessary elements of dynamical system theory
and Lie algebra theory. We will then introduce the composition methods, and
apply them to dynamical single-hidden-layer perceptrons. This will allow us to
formulate simple integration rules for these networks.
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2. Dynamical neural networks

By the term dynamical neural network, we refer here to a set of ordinary dif-
ferential equations (ODE) #(t) = A(z(t)) defined on R", where the vector field
A is parameterized by an n-input n-output feed-forward neural network. The
neural networks we consider here are single-hidden-layer perceptrons (MLP),
but we can propose similar integration rules for other single-hidden-layer feed-
forward networks.

We write the ODE as & = A(x) to follow the conventions of Lie algebra
theory. We can write its solution, as a function of the initial condition zo, in
two forms: as a flow 2(t) = ®(zo,t) (as is standard in the dynamical system
literature), or as an exponential solution z(t) = e“(zo) (as in the Lie algebra
literature [1]). The latter notation should read: “z(t) is the image after time
t of the initial condition z¢ under the flow of £ = A(z)”. It is an extension
of the case where the vector field is linear in space and the exponential of the
matrix is the solution. But we to stress that the exponential ¢4 is a nonlinear
map from the state-space into itself.

3. Lie algebra theory

Lie algebra theory is an important tool in physics [1] and an essential part of
nonlinear system theory [3]. It provides here the framework for the presenta-
tion of composition methods for ODEs. The Lie algebra we consider here the
Lie algebra is the vector space of all smooth vector fields, where we define a
supplementary operation: the Lie bracket of two vector fields, which is again
a vector field. Bracketing is a bilinear, anti-symmetric operation, which also
satisfies the Jacobi identity [1]. Recalling that we take the product of exponen-
tials to denote the composition of these maps, we can define the vector field
[A, B] as the Lie bracket of the vector fields 4, B:

92
0s.0t

[A, B] — e—s.B‘e—t.A.es.B‘et.A .

t=s=0

As we define our vector fields on R™, we can further express the bracket as

(g, 04 _ 4 9B
[A,B],..Z(Bz.ami A;. axi)'

=1

The last mathematical tool we need is the Baker-Campbell-Hausdorff (BCH).
This formula gives an expansion for the product of two exponentials of elements
of the Lie algebra [1]:

oA B _ t(A+B)+ 5[4, B+ 5(A A B+ [B,[B AN +... (g
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4. Integration of ordinary differential equations
by compositions

We now look at how to solve ordinary differential equations using compositions.
Suppose we want to solve the ODE &(t) = X (z(t)), for a time-step of ¢. The
problem becomes that of building an approximation to etX as we have that
z(t) = e*X(z0). Suppose, in a first step, that the vector field X is the sum of
two vector fields: X = A + B, where you can integrate A and B analytically
or much more easily than X. Then we can use the BCH formula to produce a
first-order approximation to the exponential map:

BCH: !X =et4.etB + o(t?). (2)

You can check this relation by multiplying the left- and right-hand sides of
Equation 1 by etX (= et:(4+B)) and expanding it using the BCH formula itself
(1). The relation of first-order approximation (2) between the solution of A and
B, and the solution of X is the essence of the method since it shows that we can
approximate an exponential map (that is the mapping arising from the solution
of an ODE) by composing simpler maps (Fig.1). By using the BCH formula to

Flow of B
Flow of X
!
. e
T
Flow of A P
Figure 1: X (z9) = et4.etB(z0).

eliminate higher-order terms as we did for the first-order approximation, but
on the composition of three terms, we can show that the following symmetric
leapfrog scheme is second order:

i t
t.X ei'A.et'B.ef‘A + o(t3),

S(t) + oft?).

Leapfrog: e

Using this leapfrog scheme as a basis element, we can build a fourth-order
scheme:

t.X

S(ct).S(dt).S(ct) + o(t®), (3)
SS(t) + o(t%),

Fourth order: e

with ¢ = —21/3/(2—2/3) and d = 1/(2—2'/3). Repeating the leapfrog strategy,
Yoshida [5] showed that it is possible to produce an approximation to et X up
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to any order:

Arbitrary order : 3Jk,3wi,v1,..., Wk, V% ¢
4)
et.X — ewl‘t‘A.e’“ .t.B . e“’k't'A.e”"‘t'B + O(tp+1)
Forest and Ruth [2] also showed that approximations can be built for more
than two vector fields:

X = 2?;1 A; = dk, awij cetX = HI‘_’=1 H:’__"_l eWii-t.Ai + O(tp+1) )

5. Integration of dynamical single-hidden-layer
perceptrons

If we decide to parameterize the vector field of our system by a single-hidden-
layer perceptron, we can derive a composition method to integrate the differ-
ential equation. The differential equation is #(t) = X (z(t)), where the vector
field is of the following form:

&.o(jx+bj) =Y A%ti(), (5)

1 j=1

where o(z) = tanh(z) and Ej,l_;j eRH j=1,...,n.

To find a composition method, we first have to solve the differential equation
& = A%P(z) associated to a single neuron. To do this, we first solve the one-
dimensional problem. Then, we use the solution of the one-dimensional case
to derive the solution for the multi-dimensional case. Finally, we derive a
composition method where each transformation is the solution of a sigmoidal
ODE.

6. One-dimensional sigmoidal ODE

We want to solve = o(z),z € R with the hyperbolic tangent for the activation
function o. Using the change of variables y = tanh z, solving by separation of
variables, and substituting back z = atanh y, we find the solution for positive
initial conditions z¢ > O:

z(t) = p(zo,t) = atanh((l + e )—1/2)‘
’ sinh? z¢

For zp = 0, we have z(t) = 0,Vt. For 2o < 0, we can directly use the symmetry
of the vector field tanh z = — tanh(—z). We thus get

o(zo,1), ifxzog>0
x(t) = q’(l‘o,t) = 0, if Tog = 0
~p(—xp,t), fzo<0
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7. Multi-dimensional sigmoidal ODE

We can now use the solution of the onﬂe—dimensional case to explicitly integrate
the multidimensional system & = A%%(z) = é’.a(l_;T x + bo) for any value of the
parameters é’,l_; The main characteristics of this system is that the velocity at
all points is parallel to & and that the intensity of the field is constant on any
n — 1 dimensional hyperplane bTx + by = constant. Therefore, the trajectories
are straight lines parallel to &, see Figure 2. To solve this problem, we use a

Figure 2: Flow of a multi-dimensional sigmoid, and change of coordinates.

translation of the origin and a change of coordinates. Let z* be a solution of
bz + by = 0. Define a translatlon of the origin w = z — z*, £ = w + z*. The
system rewntes as w = ¢ a(b w). Now, we look for a change of coordinates
z =P lw, w= Pz such that it transforms b into the first unit vector and
the new coordinate system is orthogonal. Such a change of coordinates can
be found using a Gram-Schmidt orthogonalization procedure. If we define
d = P.Z, the differential equation becomes 2 = d. o(z1). Since the solution for
z1 is independent from the other coordinates, we have

21(t) = ®(2,dy.t). (6)
Hence, since the trajectories are all parallel to ci: we have
2(t) =2° + %ﬁi d. (7)
Now, reversing the changes of coordinates, we have
z(t) = Pz(t) + z*. (8)

Equations 6, 7, 8, and a change of coordinates back to the old coordinates allow
us to compute the solution z(t) = etA™" to & = 2o (BT + bo):

sy =1 o+ ——‘D(Z?"%ﬁ‘zg & ifd £0
20 + (t.o(29)).c ifd; =0
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8. Composition method for single-hidden-layer
perceptron

From the solution of the multidimensional sigmoidal ODE, we can develop
a composition method for the solution of the dynamical single-hidden-layer
perceptron. A second-order composition methods would then be:

2(t) = S(t) (o) + ot®) = [[ 347" [ #4™™ (z0) + o(t%).  (9)

j=1 k=n

A fourth-order method would be defined as in Equation 3.
The main interest of the composition method is that it takes advantage of the
fact that we can compute the solution of the sigmoidal ODE very efficiently.

9. Conclusions and future work

We have presented new integration rules for the dynamical single-hidden-layer
perceptron. To this end, we have used composition methods derived from Lie
algebra theory through the use of the Baker-Campbell-Hausdorff formula. The
simplicity of these integration rule makes them good candidates for efficient
software implementation. This will be the subject of subsequent research.

References

[1] V. Arnold. Mathematical methods of classical mechanics. Springer-Verlag,
New York, NY, 1989.

[2] E. Forest and R. Ruth. Fourth-order symplectic integration. Physica D,
43:105-117, 1990.

[3] A. Isidori. Nonlinear control theory. Springer-Verlag, New York, NY, 1989.

[4] R. I. McLachlan. On the numerical integration of ordinary differential
equations by symmetric composition methods. SIAM J. Sci. Comput.,
16(1):151-168, 1995.

[5] H. Yoshida. Construction of higher order symplectic integrators. Phys.
Lett. A., 150:262-269, 1990.

308





