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Abstract. Topography of neural maps is an advantageous property,
e.g. in the presence of noise in a transmission channel or for data visual-
ization. Yet, this property is difficult to define and to quantify. Reviewing
some recently proposed measures to quantify topography, we give results
for maps trained on synthetic data as well as on four real-world data sets.
The measures are found to do not a perfect, but an adequate job, e.g. in
selecting a topographically optimal output space dimension.

1. Introduction

Even though many people seem to share a common intuitive understanding of
what is meant by topology preservation in neural maps, it has turned out to
be difficult to pinpoint this notion in an unequivocal and mathematically rig-
orous fashion. In a colloquial manner, topology preservation (or topography)
of a map means the mapping of similar data points to close locations in the
map layer. Thus, topography of a map is related to the notion of similarity,
which may be defined on various levels leading to different methods for defining
and measuring topography. Distances [5] and distance rankings [2, 1] as well
as geometrical [9] or topological relations [8] have been used for quantifying
topography. Each approach is motivated and illustrated by convincing, albeit
handcrafted examples. Real-world-data on the other hand could pose unfore-
seen problems due to high dimensionality and sparseness, spatial heterogeneity,
multi-fractal structure, scaling ambiguity, as well as the low quality of the data
including redundancy, noise, or missing values.

The present paper aims at relating different topography measures, and at
comparing their power of analysis for maps generated for different, illustrative
and challenging, data sets. At any level of generality a consequence of topogra-
phy is the continuity of a map. Therefore, the task of determining the effective
data dimension seemed to us particularly suited for a fair comparison.

2. Measuring topology preservation

A neural map Q assigns outputs r € V to inputs v € 4. The resp. dimensions
are DY and DA. In our simulations all maps have been produced by Koho-
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nen’s self-organizing maps (SOMs) [7]. We should remark, however, that the
measures given below! characterize the topography of maps irrespective of the
algorithm that generated the map.

The topographic product P [1] relates for each neuron the sequence of
input space neighbors to the sequence of output space neighbors. The sign of P
approximately indicates the relation between input and output space topology.
P < 0 corresponds to a too low-dimensional input space and P > 0 to a too
high-dimensional input space. P = 0 indicates an approximate match.

Spearman’s p has been used in [2] to express the fact that “the relative
positions of all neighbors of every point” [2] are to be preserved. Formally, this
involves a normalized mean squared difference between distance ranks in input
and output space. p takes values in [—1, 1] with p = 1 indicating exact metric
topology preservation.

The Zrehen-measure Z quantifies “the correctness of the following state-
ment: A pair of neighbor cells r and r’ is locally organized if the straight line
joining their weight vectors w, and w, contains points which are closer ei-
ther to w, or to wys than they are to any other” [9]. All (Z = 0)-maps are
considered to be topology preserving. This holds in particular for dimension-
reducing maps. If D4 exceeds the effective data dimension, then Z > 0. Using
this measure the optimal output dimension is selected as the largest D with
Z being not significantly different from zero.

In the topographic function ® approach [8] a graph of neighborhood re-
lations between the reference vectors is constructed by the method of masked
Voronoi polygons. The function value ®#(k), £ > 0, counts how many pairs of
nearest neighbors in the output space have a corresponding pair in the input
space with neighborhood order larger than k. Backward-mapping distortions
are recorded analogously in the negative-k terms. If ®(k) = 0 for all k the
map is considered to be perfectly topology preserving. The values of the nega-
tive (positive) k components of the topographic function indicate whether the
output dimension is too high (small). Thus, the sign of ® = ®(+1) — &(—1)
expresses what terms are predominant. The shape of ®(k) allows a detailed
discussion of the magnitude of distortions occurring in a map.

Fractal dimension analysis is another approach to the determination of
the effective data dimension D®f. To check the consistency of our topography
results, we also determined the Grassberger-Procaccia-dimension DGP [6] for
our data sets. For comparison with the maps, we evaluated DGP at that length
scale which corresponds to the size of the Voronoi regions induced by the maps.

3. Illustrative examples

We have calculated the topography measures for maps? from a two-dimensional
square-shaped input space to output spaces which form a line, a square or a

LFor brevity we have to refer to the cited papers for details.

2All maps were trained by Kohonen’s algorithm: 105 learning steps, neighborhood width
decreased from a third of the output space diameter to 0.1, learning step size decreased from
0.9 to 0.01, three map realizations per output dimension D4 and node number N.
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Figure 1: (a) Values of the topographic product P as a function of node number
for SOMs mapping the unit square to lines with N = 64,128,256,512 units
(asterisks, averaged values yield dotted lines), square grids with N = 8x8,11x
11,16 x 16,22 x 23 units (diemonds, solid lines), and cubes with N = 4x4x
4,5x5x5,7x6x6,8x8x8 units (triangles, dashed line). (b) P as a function
of output space dimension DA at N ~ 256 nodes. The zero of P at D4 = 2
clearly selects DA = 2 as optimal. (c) Same as (a), but for Spearman’s p. The
variability of the values indicates a considerable fluctuation of this measure
for non-optimal maps. (d) The mazimum of the averaged values nevertheless
uniquely determines DA = 2. (e) Same as above, but for the Zrehen-measure.
Maps with D4 =1, 2 yield Z = 0. The strong increase of Z at D* = 3 in (f)
indicates that the D* = 2-maps are topographically optimal. (g) Topographic
functions ®(k) for the same maps (solid: D* =1, N = 64, dashed: DA =1,
N = 256, dotted: DA =3, N = 4x4x4, dash-dotted: DA =3, N = 7Tx6x6).
For maps with D* = 2 we have ®(k) = 0 indicating optimality (not depicted).
(h) & = &(+1) — &(—1) as a function of DA, N ~ 256.

cube. In a second example a curved two-dimensional surface embedded in three
dimensions was combined with seven additional noisy dimensions to form ten-
dimensional inputs.

Among these maps, all of the topography measures perform quite well, see
Figs. 1, 2. The (D* = 2)-maps are identified as the most topography preserving.

In the second example in addition to dimension selection also a scale se-
lection task was addressed. The correct aspect ratio (28 x 9) between the
different directions within a given output space dimensionality was picked out
by all maps. The topography values of the other (D4 = 2)-maps were still
substantially better than those for maps with other output dimensions. For
moderate noise v = 0.1 the measures based on the graph distance failed in
both tasks, whereas the other ones did not show any significant deterioration.
Finally, for v = 0.2 all measures indicated that an output dimension D4 = 2
failed to be topographic, since the total noise variance exceeded the variance
of the two-dimensional signal.
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4. Examples involving real-world data

We checked for possible consequences of these effects by generating SOM-maps
for experimental data from a chaotic dynamical system (time delay coordinates
of a driven pendulum with embedding dimension DY = 5, n = 28000 data
points), speech data (German numerals, DY = 19, n = 2013), and two types
of image data (Lena image, DY = 16 combined from patches of 4 x 4 graylevel
pixels, n = 16384; and Landsat image data, DY = 6, n = 65536). In each
case we trained maps with varying output dimension D and tried to spot the
most topography preserving among these. The total number of neurons was
N = 256 in each map, other parameters as in described in Sect. 3.

Table 1 lists results obtained at these data sets. For the pendulum data
the D = 3-maps are selected by all measures to be the most topography
preserving. This is in good agreement with the relevant fractal dimension to
be DGP ~ 3.1. On the speech data the different measures pick out maps with
dimension D# = 2—3, but an clear-cut decision cannot be drawn. However, the
performance of speech recognition systems which make use of the topography
of the map will certainly decrease for (D4 = 1)- or (D* > 4)-maps. On the
Lena image p and Z both yield D4 = 2, P yields D* = 2 — 3 and ® yields
DA =3 — 4. Apart from @, the different measures agree quite well with the
value of a Grassberger-Procaccia-analysis (DGP ~ 1.9). Maps of the Landsat
data are optimally topographical at D4 = 2, as compared to DGP ~ 1.7 1in
a Grassberger-Procaccia-analysis. In this example, the topographic function
failed to yield a sensible value for the optimal output space dimension D.
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data set | measure | DA=1 | DA=2 | DA=3 | DA=4 | DA=5
Pendulum P -0.2709 | -0.0444 | -0.0033 | 0.0117 | 0.0368
P 0.7586 | 0.8733 | 0.8879 | 0.7658 | 0.5836
VA 0.0065 | 0.1465 | 0.3223 | 1.0516 | 2.4519
¢ 7.2917 | 3.8177 | 0.6005 | -1.3203 | -2.5981
DPI P -0.2285 | -0.0554 | -0.0035 | 0.0195 | 0.1770
p 0.6639 | 0.8568 | 0.6071 | 0.6540 | 0.3113
Z 0.0118 | 0.2194 | 0.6405 1.3537 | 2.6296
o 2.2891 | -0.0469 | -2.0238 | -3.3438 | -3.8848
Lena P -0.086 -0.022 0.029 0.078 0.134
p 0.584 0.761 0.667 0.530 0.368
Z 0.068 0.627 2.452 5.730 9.369
o 7.401 4.135 1.508 -0.789 | -2.373
Landsat P -0.117 | -0.018 0.024 0.071
p 0.697 0.813 0.733 0.556
Z 0.002 0.080 0.859 3.360
@ 13.17 9.08 5.42 2.05

Table 1: Values of the topography measures for maps of different output di-
mensionality D, each value averaged over three maps, for different data sets.

Figure 3: Dzmenszonal es-
timates DG P (solid line)
and DCCA  (dashed line)
as a function of underlying
length scales for the Land-
sat data set (cf. Sect. 4.).
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5. SOMs, PCA, and MDS

SOMs have been compared (cf. e.g. [4, 2]) to other data representation al-
gorithms such as principal component analysis (PCA) and multi-dimensional
scaling (MDS). Since topology preserving mapping does not aim at exactly
preserving inter-data distances nor a detailed clustering structure of the data,
comparisons (e.g. [4] on distortion error, metric topology preservation, and
clustering quality) appear unfavorable for SOM, although the outcome is of-
ten a close call. If one focuses on global data features the capabilities specific
to SOMs are revealed more clearly. For dimensional analysis via PCA we re-
quired a large portion of the variance of the data to be covered by projections
onto a small number DFCA of principal co Eonents For the Landsat data
(DP CA = = 2) and the pendulum data DPC = 3) higher components had
obviously small eigenvalues. The Lena data and the synthetic data set are
dominated by one eigenvector which would suggest DFCA =1, The relatively
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small set of DPI data did not allow any conclusion, since the first three compo-
nents accounted only for 75 % of the variance and higher components decayed
very slowly only.

Multi-dimensional scaling minimizes directly the mean squared difference
between inter-data distances in the input and output space. The results ob-
tained are equivalent to PCA when Euclidean metrices are used. Convergence
problems occur when a large number of data is mapped directly, such that
a vector quantization (cf. [3]) or clustering (cf. [4]) of the data is necessary.
Among the various weighting schemes a similarity to SOMs is obtained when
small distances in the output space are given a largers weights, cf. [3]. Varying
the output dimension the data dimension could be resolved for a range of length
scales which are determined by the number of quantization units (cf. Fig. 3).

6. Conclusion

The different topography measures not only coincide among themselves but
they also designate a map with a value of D which corresponds to the smallest
integer greater than D P For the justification of the neighborhood graph
representation of the input space topology, in [8] the case of a strongly curved
data manifold was referred to. The real-world data studied here suggest that
noisyness and sparseness of the data are the more relevant problems to be
considered when measuring topography. Provided an appropriate evaluation
of the maps is performed, SOMs have superior capabilities in revealing global
data features such as the effective data dimension.
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