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Abstract. We study in this paper a recurrent neural model where we
associate an ARMA process to each neuron-like unit. In order to quan-
tify the effects of the new free parameters on the network, we will use
a statistical tool, the analysis of variance (or ANOVA) to establish our
results. Finally, practical results highlighting the improvements are pre-
sented through the prediction of the Mackey-Glass chaotic signal.

1. Introduction

It is widely known that recurrent neural models can exhibit much powerful capa-
bilities than feedforward neural networks. Nevertheless, at the same time, they
are often avoided because of a fear of inordinate learning time and incomprehen-
sible algorithms or mathematics. Moreover, it is usually considered that their
learning phase is subject to more instabilities and/or bifurcations.

We will show in this paper that such fears, especially concerning the learning
phase, are unjustified. We will also introduce a new neural model by associating
to each neuron-like unit an autoregressive-moving average process. We will prove
that if this architecture introduces new free parameters, it will also drastically
decrease the learning time, improve the training error and avoid bifurcations.
To establish our results, we will introduce a new innovative method to analyze
the training errors using a statistical tool, the analysis of variance (or ANOVA).

2. Recurrent neural model and learning algorithms

We consider in this work a neural model whose individual units are governed by
the following continuous-time equations (see [6]) :

dyi .
Tiﬁ =—y; + F(z)) + I; with T; = ZJ: Wi Yj (1)

where y; is the state or activation level of unit ¢, T; the adaptive time con-
stant associated to the unit, F'(a) a squashing sigmoid-like, I; an external input
(or bias) and z; is called the total or effective input of the neuron. We wish
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to emphasize that the previous general model is governed by continuous-time
equations. Moreover, we have associated to each neuron-like unit an adaptative
time constant that takes part in the learning process. Equations (1) define the
most general recurrent model (except the fact that we do not consider time-delay
connections). More simple models can be derived by discretization. For exam-
ple, if we use a time-step At equals to 1 with all the time constants T; equals to
1, the discretization of equations (1) gives the simple recurrent model proposed
by Williams and Zipser [8].

Let us note that the learning algorithm for the network governed can be derived
either using different techniques : the calculus of variation, the Lagrange multi-
plier, or even from the theory of optimal control in dynamic programming using
the Pontryaguin Maximum Principle [1]. We used this latter method, which
is based on the introduction of a Hamiltonian function, to derive the learning
equations (for more details, see [4]).

3. Extension of the neural model to ARMA-like units

The autoregressive moving average models (ARMA) are extensively used in the
theory of prediction. The ARMA models constitues a general class of models
that appear to offer effective predictions of a wide range of dynamic systems in
the minimum mean square sense. The general model is based on two distinct
elements : the autoregressive and the moving average processes. The ARMA
processes have been introduced by G. Box and G. Jenkins for the forecasting
and control of time series [2].

In this section, we will introduce some modifications to our network by modeling
each link between two units by an autoregressive (AR) filter (also done in [7])
and by adding to each output neurons (for which a target signal is available) a
moving average (MA) process. The original aspect of our approach is the fact
that our model is governed by continuous equations and can handle dynamic
tasks. Moreover, the approach based on the Pontryagin Maximum Principle
offers a general framework for the derivation of the learning algorithms of very
general continuous-time neural networks.

We introduce new weights de-

noted w¥, (i.e. the autoregres- m
sive weié]ht between unit ¢ and ‘ai‘
j from the k-th delay link). By |(1]
coherency with the notation of

Box and Jenkins [2], we will note
p the maximum connection de-
lay (which can be considered as Figure 1: Illustration of the connections between two
the order of the autoregressive neurons for an AR process (a) and an ARMA model
filter) (see Figure la). Accord- (b)-

ingly, if a target signal is available for a particular unit (as it is the case for
the output units in a supervised learning process, this signal is denoted ¢;(¢) on
Figure 1b), we add a moving-average process of order ¢ (see Figure 1b). The
new connection weights are denoted v¥ (i.e. the moving-average weight of unit
i from the k-th delay link).

@
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The governing equation of the model is thus the following :

dyi(t) _

T; at —yi(t) + F(z;(t)) + I; (2)
o« TN, > h_owh; y;(t — kAt) for the hidden units
zit) =& Xilo D hooWhi ¥t — kAL) + 3)

> te1 VP (yi(t — kAt) — t;(t — kAt)) for the output units

Usually, the time-step At is equal to the discretization step used for the digital
simulation of the network. The learning equations of this network can be derived
with the Pontryagin Maximum Principle and a modified Hamiltonian function.
These mathematical derivations are not presented here as they are out of the
scope of this paper.

4. Influences of the ARMA parameters on the network

The important issue for the present paper is to examine the effect of the intro-
duction of ARMA-like units in the network on the quality and the speed of the
identification.

We trained a 20-neuron network to predict a chaotic series. Signal prediction
is the classical task where the input to the network is the time-varying signal
and the desired output is a prediction of the signal at a fixed time increment
in the future. The test signal that we consider is the famous chaotic signal
produced by integrating the Mackey-Glass delay-differential equation [5]. This
signal provides a useful benchmark for testing predictive techniques. We chose
to train the network to predict six time units into the future. We have already
proved elsewhere that the adaptive time constants of the model improve the
prediction capabilities of the recurrent neural network (see [3]).

4.1 Experimental results

Figure 2 presents the error for the training o
of three different architectures of the neu- U
ral network : I. classical 20-neuron net-

work, II. 20-neuron network with AR con-
nections (order p = 5), III. 20-neuron net-
work with ARMA processes (orders p =5
and ¢ = 2). Each error plot has been
obtained by averaging the error curves of
50 different learning phases for each type i
of architecture. We see that the intro- I
duction of AR filters increase the speed
and the quality of the learning but we also  Figure 2: Error plots for the training
note that the bifurcations are still present. of three different architectures of neural
Accordingly, the ARMA processes also de- networks. Each curve is obtained by av-
crease the learning time and hugely im- eraging 50 different learning curves.
prove the quality of the identification but

they also suppress the bifurcations that are present in the two other mean learn-
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that are present in the two other mean learning curves.
4.2 Methods

We will now quantify the influence of the new parameters (w¥; and v;) on the
network behavior using a new technique based on the statistical technique of
the analysis of the variance (also known as ANOVA). The purpose of the anal-
ysis of variance (ANOVA) is to test for significant differences between means.
ANOVA is a versatile statistical tool for studying the relation between a de-
pendent variable and one or more independent variables. It does not require
making assumptions about the nature of the statistical relation, nor does it
require that the independent variables be quantitative. Even if the ANOVA
procedure compares means, it is called analysis of variance because, in order to
test for statistical significance between means, ANOVA actually compares (i.e.,
analyzes) variances. To validate the results given by the ANOVA technique, we
have to compute a statistical degree of significance of these results. The statis-
tical significance of a result is an estimated measure of the degree to which it
is true. This degree is quantified using the value of the p-level which represents
a decreasing index of the reliability of a result. The higher the p-level, the less
we can believe that the observed relation between variables in the sample is a
reliable indicator of the relation between the respective variables in the pop-
ulation. The ANOVA method is used to analyze the different error functions
during the training of the network. The independent variable for the different
tests presented below is the architecture of the network (i.e. the order p and ¢
of the ARMA processes). It is interesting to note that these variables are quali-
tative. For each architecture of the network, we trained it for 50 times (using a
different initial random weights distribution) during 1,000 epochs. The depen-
dent variables are the values of the error signal every 20 iterations (the number
of dependent variables was restricted to 50 to limit the computation time). The
goal of the analysis of the variance of the different error functions is to determine
if these ones are statistically different depending on the network architecture.
Moreover, ANOVA provides a comparison where the parameter “iteration step”
disappears i.e. the ANOVA technique gives the overall error mean value corre-
sponding to a particular architecture and tells if this one is statistically different
from the error mean value of another architecture.

There are mainly three interests for a comparison based on the computation of
the error mean value over 1,000 epochs : (i) the bifurcations along the training
process increase the value of the error mean value; (%) if the training process
learns fast, the error decreases also quickly and the mean value is smaller; (%)
the asymptotic value of the error (i.e. which is an image of the quality of the
training) has a direct influence on the error mean value. To sum up, we can say
that a small mean error value indicates simultaneously that the learning process
converges quickly, that few bifurcations were present and that the asymptotic
value of the error was small.

4.3 Influence of the autoregressive parameters

We will first study the influence of the autoregressive parameters wfj (and their
order p) on the learning process. For that, we consider a 20-neuron network
with autoregressive neuron-like unit (no moving average process is present at
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this step). The order p of the autoregressive filters varies from 0 (no AR process,
i.e. the neuron presented in Section 2) to 10.
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Figure 3: ANOVA results concern- \
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Figure 3 depicts the results of the ANOVA treatment on these architectures.
The p-level of this analysis equals 0.052; that means that the absolute maximum
error probability on the conclusions is less than 5.2%. We clearly see the positive
influence of the autoregressive weights (wfj for k > 0). The overall mean error
for the classical network without ARMA process hits 0.114. The error decreases
drastically with the order p of the AR processes. We note that only a first-order
AR process leads to an ANOVA error parameter of 0.079 (a 30 % gain). The
error parameter decreases to reach a minimum for p equals three to reach a value
of 0.062.

The first conclusion is thus that the introduction of three new parameters for
every neuron can divide the error mean value by a factor of two. We also see that
for an order p that is greater than three, the ANOVA error parameter increases
continuously. It is easy quite easy to understand this fact : the greater the
order p is, the more free parameters wfj the learning algorithm has to adapt.
The training process is slower : the error mean value is higher according to the
second point presented in Section 4.2.

4.4 Influence of the moving average parameters

We now consider the influence of the second parameters of the ARMA processes :
the moving average parameters vf. We wish to emphasize that these parameters
are only associated to the output units for which a target signal is available
during the training phase.

We consider a 20-neuron network with autoregressive process of 10" order
(p = 10). A moving average process is associated to the only output neuron
of the network. The order ¢ of this moving average filter varies from 0 (no MA
process) to 9. Figure 4 depicts the results of the ANOVA treatment on these
architectures. The p-level of this analysis equals 0.048; that means that the ab-
solute maximum error probability on the conclusions is less than 4.8%. Figure 4
gives us a statistical proof of the observations of Section 4.1 : the small amount
of free parameters added to the output unit impressively improve the quality of
the learning phase. In the particular case of Figure 4, the best improvement is
obtained for a first order MA process. The performances of the system remain
quite constant for the other orders.
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Figure 4: ANOVA results concern-
ing the influence of the order q of the
MA processes on the error function.
The network consists in 20-neurons
with AR filter (p=10). The order q
ranges from 0 to 9. The confidence
p-level equals 0.048.

5. Conclusion

In this paper, we have shown the interesting new capabilities of recurrent neu-
ral networks where an ARMA process is associated to each neuron. Using the
ANOVA technique, we gave an original and statistical proof of these enhance-
ments : the learning time has decreased, the training error is better and there are
fewer bifurcations. Even if these architectures introduce some new free param-
eters to adapt, we believe that they can bring new features to recurrent neural

models.
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