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Abstract. In this paper we show that the loading problem for a 3-node
architecture with sigmoidal activation is NP-hard if the input dimension
varies, if the classification is performed with a certain accuracy, and if
the output weights are restricted.

1. Introduction

Feedforward networks are a common tool in machine learning. Only some rep-
resentative data 1s needed to train a network automatically such that it repro-
duces a complex input-output association. There exist theoretical guarantees
for the generalization capability [7]. But in praxis the training algorithms are
sometimes very slow, especially for large input dimensions.

The loading problem is to decide if a training set can be stored by a fixed
architecture correctly. Blum and Rivest have shown the NP-completeness for
a network with 3 computation units, varying input dimension, and perceptron
activation [1]. Dasgupta et.al. have generalized the result to the semilinear
activation [2]. Usually, one deals with the sigmoidals sgd () or tanh(z). Hoeff-
gen has proved the NP-completeness for sgd, but binary weights [4]. Sima has
shown the NP-hardness for a sigmoidal architecture with an additional condi-
tion which is fulfilled e.g. if the output bias is 0 [5]. This last approach deals
with a realistic setting, but can neither be transformed to tanh nor be expanded
to a classification with reference # 0. In [8] Vu has presented a result which
focuses on the complexity of finding solutions with minimal squared error.

Here, we will deal with networks as a classification tool. We will show
the NP-hardness of the loading problem for the sigmoidal 3-node architecture
with growing input dimension if the classification accuracy is at least € and
the output weights are bounded by a constant B. This result generalizes to
functions which can be approximated by a scaled or shifted sgd.

2. The loading problem

The 3-node architecture computes for an input dimension n the function
fiR" 5 R, f(x) = aNi(x)+ F Na(x) + v, where a, 3, ¥ € R and the two
hidden nodes Ny and N5 compute the functions

Ny :R" >R, Ny(x) =sgd(ao + 2?21 a;z;)  and

Ny :R™ 5 R, Na(x) =sgd(bo + > iy bizi)
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on the input vector x = (21, ...,2,). Here, a = (a1,...,a,), b= (b1,...,by) €
R™ ag, bg € R, and sgd(z) = 1/(1 +e7%).

The loading problem is the following problem: Consider a pattern set
(x1,41)s -+, (Xm,Ym) € R? x {—1,1}. Is it possible to find weights a, b, ap,
by, o, 3, and =y such that for the corresponding network f(x;) > 0< y; = 1Vi?

The loading problem with accuracy at least ¢ and weight restric-
tion B is the loading problem as defined above with the additional restric-
tions: |f(x;)| > € for any x;, |a| < B, |f] < B. That is, the classification is
performed at least with a fixed distance € from the classification bound 0.

Finally the loading problem with accuracy ¢, weight restriction B,
and unbounded input dimension consists of all pattern sets with arbitrary
input dimension such that each pattern set can be classified with accuracy € and
weight restriction B by a 3-node network with appropriate input dimension.

3. A geometric view

Assume a 3-node architecture classifies a pattern set correctly with accuracy
e and weight restriction B. The set of parameters such that the patterns are
mapped correctly is an open set in R5+2?7; therefore after a slight shift of the
parameters if necessary we can assume, that vy 20, a ++v # 0, 54+ v # 0, and
a+ 3+ v #0. Further, we can assume that a and b are linearly independent
and o # 0, 8 # 0. We are interested in the boundary that is defined by

(%) asgd(a’x + ag) + Bsgd(b'x + by) +v = 0.

This is empty or forms an (n — 1)-dimensional manifold M with the following
form: If x € M, then x+v € M for any v orthogonal to a and b. Consequently,
M is constant in the directions orthogonal to a and b; to describe M it is
sufficient to describe the curve that is obtained if M is intersected with a plane
containing a and b. After a rotation, translation, and scaling we can assume
a'x + ap = 21 where z; is the first component of x. Then the curve can be
parametrized by z1, a normal vector by n(z1) = asgd’(z1) -a + Bsgd’(b'x +
bo) - b where the term bx + by can be substituted using (*). Define n(z;) =
n(x1)/|n(x1)]. Considering v, v+ a, v+ 8, and v + o + 3 several cases result:
Case 1: All values are positive or all values are negative: M is empty.

Case 2: One value 1s positive, the other three are negative:

Since sgd(—xz) = 1 — sgd(x) we can assume that v > 0, o < —v, and § < —~.

turning point

Figure 1: Classifications by the 3-node architecture
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Dividing (%) by v we obtain y = 1, @ < —1, and 8 < —1. The curve describing
M looks like in Fig.la, especially, it is convex, as can be seen as follows: For
sgd(x1) = —1/a the normal vector is n(x1) ~ —a/|a|. For sgd(z1) =~ 0 it
is n(x1) —b/|b|. In general, A(z1) = A1(x1)a + Az(x1) b for appropriate
functions A; and A,. Assume, the curve is not convex. Then, there would
exist at least two points at the curve with identical 7, identical A; /A2 and,
consequently, at least one point #1 with (A1/Az2)(x1) = 0. But one can compute
(A /A2)! (1) = C(a1) - (=8 — 1+ sgd(21)(26 + 2) +sgd’(21)(2a + a” + af))
with some factor C'(z1) £ 0. If (A1 /A2)/(21) was 0, a = = —1 or

o~

~
o~
~

(%) sgd(21) = ala+3+2 a*(a+ 5 +2)? ’

—B-1 ¢<1+ﬁ><<a+ 1)? + f(a + 1))

)
where the term of the root is negative except for « = —1 or = —1.
Case 3: Ezactly two values are positive:
Arguing as before we can assume v = 1, a < =1, § > —1, and o 4+ § < —1.
If sgd(z1) m —y/a or sgd(z1) = (—y — f)/« it is (x1) &~ —a/|a|. The curve
describing M has an S-shaped form (see Fig.1b) because there exists at most
one point of the curve where (A1/A2)/(21) vanishes: This is sgd(z;) = 0.5 if
a+ 42 =0, it is the solution (xx) with positive sign if @ + # < 0, and the
solution (**) with negative sign if & + 3 > 0.
Case 4: Ezactly 3 values are positive: This is dual to case 2.

4. Main theorem

Theorem 1 For fired ¢ €]0,0.5] and B > 2 it is NP-hard to solve the loading
problem with accuracy ¢, weight restriction B, and unbounded tnput dimension
for the 3-node sigmoidal architecture.

Proof: The (2,3)-set splitting problem (SSP) is the following problem:
Given aset S ={s; |1 <7< n}andaset C = {c;|1<j < m} of subsets
of S where each c; contains exactly 3 elements, does two disjoint subsets S,
Sy C S exist such that S =51 U Sy and ¢; € S1,¢; € Safor je{l,...,m}?
The SSP is NP-complete [3]. Tt will be reduced to the loading problem in
polynomial time showing that the loading problem is NP-hard.
Reduction: For a SSP the following m + n + 15 patterns in R"*5 can be loaded
exactly if the SSP is solvable:
Positive examples, i.e. the output shall be > ¢, are
the points (0,...,0,1,0...,0,1,0...,0,1,0,...,0) with an entry 1 at the
place i, k, and { for any ¢; = {s;, sg,s:} in C,
the points (0,...,0), (0,...,0,1,1,0,0,0), and (0,...,0,0,1,1,0,0),
the points (0,...,0,—0.5,0.5), (0,...,0,0.5,0.5),
the points (0,...,0,¢,¢), (0,...,0,—¢,¢), where ¢ is a constant such that
¢>14(4B)/e- (sgd™ (1 — ¢/(2B)) —sgd™ ' (¢/(2B))) .

Negative examples, i.e. the output shall be < —¢, are
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the points (0,...,0,1,0,...,0) with an entry 1 at the place i < n + 3,

the points (0,...,0,1,1,1,0,0), (0,...,0,—15,0.5), (0,...,0,15,0.5),

the points (0,...,0,14+¢,¢), (0,...,0,—1 — ¢, ¢) with ¢ as above.
Assume, the SSP is solvable. Consider the weights « = 8§ = —1, v = 0.5,
a=k- (a1,...,an,1,=1,1,1,=1),b=4k-(by,..., by, —1,1,—=1,=1,—-1), ap =
—0.5-k, by = —0.5k, where k is a constant,

ai:{l if s, € .57 and bi:{l if s; € 59

—2 otherwise —2 otherwise

For appropriate k& this solves the loading problem with accuracy € < 0.5.
Assume, the loading problem s solvable. First, the cases 1, 3, and 4 are ex-
cluded. Then a solution of the SSP is constructed using the convexity of the
positive region in case 2. Obviously, case 1 can be excluded.

Assume the classification is of case 4: We will consider only the last two di-
mensions, where the following problem is included: (We drop the first n+3 co-
efficients which are 0.) (—0.5,0.5), (0.5,0.5), (¢, ¢), (—¢,¢) — 1 and (—1.5,0.5),
(1.5,0.5), (14+¢,¢), (=1 =¢,¢) = —1 (see Fig.2a). Define py := sgd_l(e/(QB))
and py :=sgd ™ (1 —¢/(2B)). {x|po < a’x+ao < p1} and {x|po < bfx+by <
p1} are called the a- resp. b-relevant region. Outside, sgd(a’x + ag) resp.
sgd(b'x + bg) can be substituted by a constant, the difference is at most /2.

Since the points with second component 0.5 cannot be separated by one
hyperplane, one point (#,0.5) with # € [—1.5,1.5] exists inside the a- resp.
b-relevant region. If the points (¢,c¢) and (1 4 ¢, ¢) were both outside the a-
relevant region then they would be separated by any hyperplane with normal
vector b which intersects the separating manifold outside the a-relevant region
(see Fig.2b). The normal vector of the manifold is approximately —a/|a| for
large resp. small b'x 4 by. Therefore we can find a hyperplane where both
points are located on the same side. Contradiction. The same argumentation
holds for (—e,¢) and (=1 — ¢,¢). Therefore the diameter of the a-relevant
region restricted to the last two dimensions is at least ¢ — 1. Consequently
a<(p1 —po)/(c—1)=¢/(4B) where a = |(ant4, tnys)|-

If one of the points (¢, ¢) and (1 4 ¢,¢) and one of the points (—c¢,¢) and
(=1 — ¢, c) is contained in the b-relevant region, it follows b < ¢/(4B) for b =
|(brg4, bpts)|- This leads to a contradiction: For x; = (¢, ¢) and x3 = (1 +¢,¢)
itis [f(x1) — f(x2)] < 2]al]a’x; —a’xa| + 2|3] |bix; — b'xa| <e.

a) b separating o -
hyperplanes™\

separating
< - manifold

a'x + ay = py

—1—-c 1.5 0 1.5 1+e¢

Figure 2: a) Classification problem; b) Outside the b-relevant region
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separating hyperplanes
/A |

Figure 3: Classification problem; projection of the classification to the a/b-
plane, at least one negative point is not classified correctly

If both points (¢, ¢) and (1 4 ¢, ¢) or both points (—e, ¢) and (=1 — ¢, ¢) are
outside the b-relevant region, the difference of the values sgd(b’x — by) with
corresponding x is at most €/(2B). The same contradiction results.

Assume the classification s of case 4: The classification includes in the
dimensions n + 1 to n 4+ 3 the problem depicted in Fig.3. The negative points
are contained in a convex region, each positive point is separated by at least one
tangential hyperplane of the separating manifold M. Consider the projection
to a plane parallel to a and b. Following the convex curve which describes M
the signs of the coefficients of a normal vector can change at most once. But
a normal vector oriented towards the positive region and separating a positive
point has necessarily the signs (+,+, —) for (1,1,0), (=, +,+) for (0,1,1), and
(—,—,—) for (0,0,0) in the dimensions n + 1 to n 4+ 3. Contradiction.

Solution of the SSP: The classification is of case 2. We can assume v = —1,
a>1,and 8 > 1. Define S; = {s; | a; is positive }, So =5 — 5. Tt is

(i)  asgd(ag) + Bsgd(by) < 1 origin is +
(i7)  asgd(ag+ a;) + Bsgd(bg +b;) > 1 point s; is —
(i17)  asgd(ao + a;i +aj + ax) + Fsgd(bo + b; +b; + b)) < 1

(¢74) is valid for all points such that ¢ exists with ¢ = {s;, s;, s }.

Assume ¢ = {s;, s;, s} exists such that all three coefficients are positive.
Necessarily, b;, b;, b < 0. In the components 7, j, k the classification (1,0, 0),
(0,1,0), (0,0,1) = —1 and (0,0,0), (1,1,1) — 1 is contained. The positive
points are contained in a convex region, each negative point is separated by
at least one tangential hyperplane of the separating manifold M. We project
to a plane parallel to a and b. Following the curve which describes M, the
normal vector, oriented towards the positive region, is & —a/|al, then the signs
of each component of the normal vector change one time, finally it is & —b/|b|.
But a vector where the three signs in dimension ¢, j, and k are equal cannot
separate a negative point, further the sign in dimension ¢ has to be negative if
s; 1s separated, the same is valid for j and k. Contradiction.

The same argumentation shows that at least one of b;, b;, and by, is negative,
i.e. at least one of a;, a;, and ay is positive because of (7) and (47). a
Note, that it is not obvious if the loading problem is contained in NP. This
is due to the fact that the weights in the first layer and the precision that is
necessary for the computation is not limited a priori.
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Corollary 2 The loading problem with accuracy ¢ €]0,0.33[ and weight re-
striction B 1s NP-hard for any actiwvation function o which can be approxi-
mated by the sgd activation as follows: a,b,c,d € R exist with |a| < B/2 and
lac(bx+c)+d—sgd(x)| < ¢/(4B) V. This is valid for tanh(z) = 2sgd(x) — 1.

5. Discussion

As a consequence training of a sigmoidal network can be very expensive for large
input dimensions under the reasonable assumptions that the output weights are
restricted and the classification is performed with a certain accuracy.

The restrictions are necessary because otherwise the geometric configuration
that leads to a solution of the SSP (case 2) and a configuration which should
be excluded (case 3) cannot be distinguished - they differ only slightly on a
bounded region. Further, the restrictions offer the possibility to generalize the
result to functions that can be approximated by the sigmoidal.

Unfortunately, it is not obvious how the proof of Theorem 1 can be expanded
to other, even very simple activations. The main argument has been that the
manifold limits a convex set. This is not true for such simple functions like a
monotonous, piecewise linear function. Further, there exist activation functions
with some nice properties where any consistent input set can be implemented
and the loading problem is trivially solvable [6]. Tt is not obvious if the same
holds with the additional condition concerning the accuracy and weights.

Finally, it remains unsolved if an NP-hardness result holds for architectures
containing more layers than the 3-node network as formulated in [2].
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