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Abstract.

Recurrent Self-Organizing Map (RSOM) is studied in three different time
series prediction cases. RSOM is used to cluster the series into local data
sets, for which corresponding local linear models are estimated. RSOM
includes recurrent difference vector in each unit which allows storing con-
text from the past input vectors. Multilayer perceptron (MLP) network
and autoregressive (AR) model are used to compare the prediction re-
sults. In studied cases RSOM shows promising results.

1. Introduction

In time series prediction the goal is to construct a model that can predict the
future of the measured process under interest. Various approaches to time series
prediction have been studied over the years [14]. Many different types of neural
networks have been used in time series prediction, see e.g. [8] and [10]. Of linear
methods autoregressive (AR) [1] models are frequently used. Different models
can be divided to global and local models. In global model approach only one
model is used to characterize the measured data. Local models are based on
dividing the data set to smaller sets of data, each being modeled with a simple
local model [9]. Creation of the local data sets is usually carried out with
some clustering or quantization algorithm such as k-means, Self-Organizing
Map (SOM) [13], [12] or neural gas [7]. Input to the model is usually provided
by using a windowing technique to split the time series into input vectors.
Typically input vectors contain past samples of the series up to certain length.
In this procedure the temporal context between consecutive vectors is lost. One
way of trying to avoid this is to include to the model memory that can store
contextual information which exists between the consecutive input vectors.
Our approach in this study is to use Recurrent Self-Organizing Map (RSOM)
[11] to store temporal context from the input vectors. The model consists of
RSOM and local linear models that are each associated with a unit in the map.
RSOM is used to cluster the time series into local data sets which belong to
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certain unit and corresponding local model. Local model parameters are then
estimated using the obtained local data sets. The rest of the paper is organized
as follows: In the second section RSOM architecture and learning algorithm is
introduced. In the third section different prediction cases are studied. In three
cases of different time series results of RSOM are compared with linear and
nonlinear global models (AR and MLP). Finally some conclusions are made.

2. Temporal Quantization with RSOM

Self-Organizing Map (SOM) [4] is a quantization method with topology preser-
vation. Temporal Kohonen Map (TKM) [2] is a modification to the SOM that
involves adding leaky integrators to the outputs of the map. Moving the leaky
integrators from the unit outputs into the inputs gives rise to the Recurrent
Self-Organizing Map (RSOM) [11].

2.1. Recurrent Self-Organizing Map

In the training algorithm of the RSOM an episode of consecutive input vectors
z(n) starting from a random point in the input space is presented to the map.
The difference vector y;(n) in each unit of the map V), is updated as follows:

yi(n) = (1 = a)yi(n — 1) + a(x(n) — wi(n)) , (1)

where y;(n) is the leaked difference vector in unit 7, 0 < a < 1 is the leaking
coefficient, z(n) is the input vector and w;(n) is the weight vector of the unit 4.
Each unit involves an exponentially weighted linear IIR filter with the impulse
response h(k) = a(l —a)¥, k > 0, see Fig. 1. At the end of the episode (step
n), the best matching unit b is searched by

yo = mini{[lyi()|l} , (2)

where i € Vis and parallel vertical bars denote the Euclidean vector norm.
Since the feedback quantity in RSOM is a vector instead of a scalar it also
captures the direction of the error which can be exploited in weight update.
The map is now trained with a slightly modified Hebbian training rule:

wi(n + 1) = wi(n) +v(n)hp(n)yi(n) , (3)

where i € Viy and y(n), 0 < y(n) < 1, is a scalar valued adaptation gain.
The neighborhood function, h;,(n), gives the excitation of unit i when the best
matching unit is . The winning unit is moved toward the linear combination
of the sequence of input vectors captured in y;. After updating all difference
vectors y; are set to zero, and a new random point from the input space is
selected. The above scenario is repeated until the mapping is formed.

Because RSOM is trained with the y’s it seeks to minimize quantization
criterion that differs from the criterion with TKM. Nevertheless the resolution
of RSOM is limited to the linear combinations of the input vectors with different
responses to the operator in the unit inputs.
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2.2. Local Model Estimation

Figure 2. shows the procedure for building the models and evaluating their
prediction abilities with testing data [5]. Time series is divided to training and
testing data. Input vectors to RSOM are formed by windowing the time series.
For model selection purposes 4-fold cross-validation [3] was used. The best
model according to cross-validation is trained again with the whole training
data. This model is then used to predict the test data set that has not been
presented to the model before.
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Figure 1: Schematic picture of an
RSOM unit which acts as a re-
current filter.
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Figure 2: Building of the local models.
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3. Case Studies

Three different time series were studied to compare RSOM with local linear
models to MLP and AR models. The prediction task was in all cases one-step
prediction. The same cross-validation scheme was used for all models.

For the RSOM with local linear models free parameters were input vec-
tor length p, time step between consecutive input vectors s, number of units
n, and the leaking coefficient a of the units in the map giving rise to model
RSOM (p, s, ny, ). In the studied cases parameters were varied as n,, € {5,9,13},
s € {1,3,5} and a € {1.0,0.95,0.78,0.73,0.625,0.45,0.40,0.35} corresponding
to episode lengths 1 ... 8. Input vector length p was varied differently in the
three cases as described later. The regression models were estimated using the
least squares algorithm in MATLAB 5 statistics toolbox using the data for which
the corresponding RSOM unit was the best matching unit.

The MLP network was trained with Levenberg-Marquardt learning algo-
rithm implemented with MATLAB 5 neural networks toolbox. An MLP(p,s,q)
network with one hidden layer, p inputs and ¢ hidden units was used. Variation
of parameters p and s were chosen to be the same as in RSOM models, while
q was varied as ¢ € {3,5,7,9}.
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AR (p) models with p inputs were estimated with MATLAB 5 using the least-
squares algorithm. The order of the AR model was varied as p € {1,...,50}.
Results of the AR model serve as an example of the accuracy of a global linear
model in the current tasks.

3.1. Mackey-Glass Chaotic Series

Mackey-Glass time series (Fig 3.) is produced by a time-delay difference system
dx az(t — )
— t -~ @7

pa(®) + 1+t — )0

of the form [6]:
= 4
7 (4)

where x(t) is the value of the time series at time ¢. This system is chaotic for
v > 16.8. The time series was constructed with parameter values a = 0.2,
B = —0.1 and v = 17 and it was scaled between [-1,1]. From the beginning
of the series 3000 samples was selected for training, and the rest 1000 samples
were used for testing. For RSOM and MLP models length of the the input
vector was varied as p € {3,5,7}.

The sum-squared errors gained for one-step prediction task are shown in
Table 1. MLP(3,1,7) model gives the smallest cross-validation error but fails
to predict the test set accurately. For the AR(2) model the results are opposite.
AR model does not model here the underlying phenomena, instead it predicts
the next value of the series using mainly the previous value. RSOM (3,1,5,0.95)
gives moderate accuracy for both cross-validation and test data sets. With the
test set, however, the error is smaller than with MLP network.
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Figure 3: Mackey-Glass time series Figure 4: Laser time series

3.2. Laser Series

Laser time series [14] (Fig 4.) consists of measurements of the intensity of an
infrared laser in a chaotic state. The data is available from an anonymous ftp
server 1. From the beginning of the series first 2000 samples were used for

training, and the rest 1000 samples were used for testing. Both series were

Lftp://ftp.cs.colorado.edu/pub/Time-Series/SantaFe/ containing files A.dat (first 1000
samples) and A.cont (as a continuation to A.dat 10000 samples)
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— Table 1. Prediction Errors for

ost Mackey-Glass Time Series.
[[ CV Error [ Test Error |

|

RSOM(3,1,5,0.95) 6.5556 3.1115
! MLP(3,1,7) 0.3157 3.7186
AR(2) 1.1424 7.600

Table 2. Prediction Errors for

Laser Time Series.
~osfl 1] [[ CV Error | Test Error |

o8 | [ RSOM(3,3,13,0.73) 14.6995 7.3804

e MLP(9,1,7) 1.9574 0.9997
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Figure 5: Electricity consumption

time series Table 3. Prediction Errors for

Electricity Consumption Time Series.

[ [[ CV Error | Test Error |

RSOM(3,1,13,0.73) 18.0673 2.6735

MLP(8,1,9) 7.6007 1.4345

AR(30) 6.5698 2.1059

scaled between [-1,1]. For RSOM and MLP models length of the the input
vector was varied as p € {3,5,7}.

The sum-squared errors gained for one-step prediction task are shown in
Table 2. The laser series is highly nonlinear and thus the errors gained with
AR(12) model are considerably higher than for other models. The series is also
stationary and almost noiseless, which explains the accuracy of the MLP(9,1,7)
model predictions. In this case RSOM (3,3,13,0.73) gives results that are better
than with AR model but worse than with MLP model.

3.3. Electricity Consumption Series

Electricity consumption series (Fig. 5.) contains measured load of an electric
network. Measurements contain hourly consumption of electricity over a period
of 83 days (2000 samples). The series was scaled between [-1,1]. For the
training 1600 samples were selected, and the rest 400 samples were used for
testing. For RSOM and MLP models length of the the input vector was varied
as p € {4,8,12}.

The sum-squared errors gained for one-step prediction task are shown in
Table 3. The series contains 24 hours long cycle and also slower trend and
noise in the form of measurement errors. AR(30) model is found to reach quite
acceptable results, due to the fact that model includes the whole 24 hour cycle.
As the results with MLP(8,1,9) model show, nonlinear model can reach better
predictions with a shorter window length. In this case RSOM (8,1,13,0.73)
model does not give any improvement due to the insufficient input vector length
used in model estimation.
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4. Conclusions

Time series prediction using Recurrent SOM with linear regression models has
been studied. For the selected prediction tasks this scheme gives promising
results. Due to the selection of RSOM parameters its prediction accuracy did
not reach in all cases accuracy of the AR model. However, in the case of the
highly nonlinear laser series RSOM model gave considerably better prediction
results than linear models. In the studied cases MLP seems to perform better
than RSOM. This is mainly due to the selected one-step prediction problem.
Another reason is the linear models used with RSOM.

RSOM model has several attractive properties in the study of time series.
Perhaps the most important is the visualization possibilities of the map. An-
other is the ability to find temporal features from the data with an unsupervised
learning algorithm. In this study we used RSOM that has the same feedback
structure in all the units. It is possible, however, to allow the units of RSOM to
have different recurrent structures. Such extensions of RSOM will be studied
in the near future.
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